Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(1+5+5^2+\cdot\cdot\cdot+5^{404}\)
= \(\left(1+5+5^2\right)+\cdot\cdot\cdot+\left(5^{402}+5^{403}+5^{404}\right)\)
= \(\left(1+5+25\right)+\cdot\cdot\cdot+\left(5^{402}\cdot1+5^{402}\cdot5+5^{402}\cdot25\right)\)
= \(31+\cdot\cdot\cdot+\left(1+5+25\right)\cdot5^{402}\)
= \(31\cdot1+...+31\cdot5^{402}\)
= \(31\cdot\left(1+...+5^{402}\right)⋮31\)
Vậy tổng trên chia hết cho 31
Ghép các số lại
1+5+5^2=31
5^3+5^4+5^5=5^3.(1+5+5^2)=5^3.31
Dễ r đung ko?
\(1+5+5^2+...+5^{404}\)
\(=5^3\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{404}\left(1+5+5^2\right)\)
\(=\left(1+5+5^2\right)\left(5^3+5^4+...+5^{403}+5^{404}\right)\)
\(=31.\left(5^3+5^4+...+5^{403}+5^{404}\right)\)
Vậy tổng trên chia hết cho 31
1 + 5 + 52 + .... + 5404
= ( 1 + 5 ) + ( 52 + 53 ) + ... + ( 5403 + 5404 )
= 6 + 52 . ( 1 + 5 ) + ... + 5403 . ( 1 + 5 )
=6 + 52 . 6 + ... + 5403 . 6
= 6 . ( 1 + 52 + ... + 5403 )
= 3 . 2 . ( 1 + 52 + .... + 5403 ) chia hét cho 3
=> B=(1+5+52)+(53+54+55)+...........+(5402+5403+5404)
=> B= 1.(1+5+52)+53.(1+5+52)+.........+5402.(1+5+52)
=> B=1.31+53.31+...........+5402.31
=> B=31.(1+53+........+5402)
Vì 31 chia hết cho 31 => 31.(1+53+............+5402) chia hết cho 31
=> B chia hết cho 31 ĐPCM
Tổng \(S=1+5+5^2+5^3+...+5^{403}+5^{404}\) có 405 số hạng
405 không chia hết cho 2 nên cộng S theo cách nhóm sau:
\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{402}+5^{403}\right)+5^{404}\)
Sẽ thừa ra số hạng cuối 5404 .
\(S=\left(1+5\right)+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{402}\left(1+5\right)+5^{404}\)
Các số trong () =6 chia hết cho 3 và 5404 không chia hết cho 3 nên S không chia hết cho 3.
A= 1+5+52+...+5402+5403+5404
=(1+5+52)+(53+54+56)+....+(5402+5403+5404)
=1.(1+5+52)+52.(1+5+52)+...+5402.(1+5+52)
=1.31+52.31+...+5402.31
=31. (1+52+...+5402) chia hết cho 31
vậy A chia hết cho 3
A=1+5+5^2+..+5^402+5^404
=(1+5+5^2)+...+(5^402+5^403+5^404)
=31+..+5^402(1+5+5^2)
=31+...+5^402.31
=31(1+...+5^402) chia hết cho 31
=(1+5+5^2)+...+5^402(1+5+5^2)
=31+...+5^402.31
=31(1+...+5^402) chia hết cho 31
\(1+5+5^2+...+5^{404}=\left(1+5+5^2\right)+...+\left(5^{400}+5^{401}+5^{402}\right)=31+31.5^3+...+31.5^{400}\)
\(=31\left(1+5^3+5^6+...+5^{400}\right)\)chia hết cho 31