K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2015

Để phân số này tối giản thì 2 số này phải nguyên tố cùng nhau.

Gọi ƯCLN(12n + 1; 30n + 2) là d

=> 12n + 1 chia hết cho d => 5(12n + 1) chia hết cho d

     30n + 2 chia hết cho d => 2(30n + 2) chia hết cho d

Từ 2 điều trên => 5(12n + 1) - 2(30n + 2) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> (60n - 60n) + (5 - 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(12n + 1; 30n + 2) = 1

hay phân số 12n + 1/30n + 2 là phân số tối giản

Vậy...

26 tháng 12 2015

Gọi d thuộc ƯC (12n+1, 30n+2). Ta có: 
12n+1 chia hết cho d, 30n+2 chia hết cho d 
=> 12n+1 - 30n+2 chia hết cho d 
=> 5(12n+1) - 2(30n+2) chia hết cho d 
=> 60n+5 - 60n+4 chia hết cho d 
=> (60n - 60n) + (5-4) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 hoặc d = -1 
Vậy phân số trên là phân số tối giản. 

10 tháng 2 2018

\(\frac{12n+1}{30n+2}\)

Gọi d = ƯCLN ( 12n+ 1 ; 30n + 2 )

\(\Rightarrow12n+1⋮d\)                 \(\Rightarrow5\left(12n+1\right)⋮d\)

      \(30n+2⋮d\)                      \(2\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5-60n-4\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\) hoặc     \(d=-1\)

\(\Rightarrow\) 12n + 1 ; 30n + 2 là hai số nguyên tố cùng nhau

\(\Rightarrow\) Phấn số \(\frac{12n+1}{30n+2}\) là phân số tối giản

10 tháng 2 2018

gọi \(ƯCLN\left(12n+1;30n+2\right)=d\left(d\varepsilon N,d>0\right)\)

\(\Rightarrow12n+1⋮d;30n+2⋮d\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\Leftrightarrow1⋮d\Rightarrow d=1\)(do D thuộc N*)

Vậy \(\frac{12n+1}{30n+2}\)tối giản

21 tháng 5 2020

Gọi \(\left(12n+1,30n+2\right)=d\)   \(\left(d\inℕ^∗\right)\)

Vì \(\left(12n+1,30n+2\right)=d\)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)

\(\Rightarrow\left(12n+1\right)-\left(30n+2\right)⋮d\)

\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)

\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\) Tử và mẫu của 2 phân số đó là 2 số nguyên tố cùng nhau nên \(\frac{12n+1}{30n+2}\) tối giản   (đpcm)

21 tháng 5 2020

Gọi d là ƯC(12n + 1 ; 30n + 2)

\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)

=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d

=> 60n + 5 - 60n - 4 chia hết cho d

=> ( 60n - 60n ) + ( 5 - 4 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(12n + 1 ; 30n + 2) = 1

=> \(\frac{12n+1}{30n+2}\)tối giản ( đpcm )

18 tháng 2 2016

gọid  ƯC của 12n+1 ;30n+5

suy ra 12n+1 chia hết cho d;30n+5 chia hết chod 

suy ra 30n+2-12n+1 chia hết cho d 

suy ra 5.12n+1 -2.30n+2 chia hết cho d 

suy ra 1 chia hết cho d suy ra d =1 

vậy 12n+1 ,30n+2 là hai số nguyên tốcùng nhau 

suy ra 12n+1 /30n+5 là phân số tôi giản

chắc chắn đúng đấy k cho mình nhé nài 12n+3 bạn chép sai phải là 12n+1 đấy mình sửa rồi

18 tháng 2 2016

Gọi d là ƯCLN ( 12n + 3 ; 30n + 5 )

=> 12n + 3 ⋮ d => 5.( 12n + 3 ) ⋮ d => 60n + 15 ⋮ d

=> 30n + 5 ⋮ d => 2.( 30n + 10 ) ⋮ d => 60n + 20 ⋮ d

=> [ ( 60n + 20 ) - ( 60n + 15 ) ] ⋮ d

=> 5 ⋮ d => d = { + 1 ; + 5 }

Vì ƯCLN ( 12n + 3 ; 30n + 5 ) = { + 1 ; + 5 } nên 12n + 3 / 30n + 5 không tối giản ( đpcm )

4 tháng 3 2017

Gọi d là ƯCLN của 12n + 1 và 30n + 2 

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5.(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d 

=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d

=> d = 1

Vậy phân số \(A=\frac{12n+1}{30n+2}\)

4 tháng 3 2017

Gọi ƯCLN(12n+1;30n+2)=d => 12n+1 chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1) chia hết cho d và 2(30n+2) chia hết cho d

=>60n+5 chia hết cho d và 60n+4 chia hết cho d

=>(60n+5)-(60n-+4) chia hết cho d

=>1 chia hết cho d

=>d=1

Phân số \(\frac{12n+1}{30n+2}\) có ƯCLN(12n+1;30n+2)=> \(\frac{12n+1}{30n+2}\) tối giản với mọi số nguyên n