Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh phân số này tối giản ta cần chứng minh UCLN(7n+4,9n+5)=1
Gọi UCLN(7n+4,9n+5)=d
\(\Rightarrow\)\(9n+5⋮d\Rightarrow7\left(9n+5\right)=63n+35⋮d\left(1\right)\)
\(7n+4⋮d\Rightarrow9\left(7n+4\right)=63n+36⋮d\left(2\right)\)
\(\left(2\right)-\left(1\right)\Leftrightarrow\left(63n+36\right)-\left(63n+35\right)=1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)Phân số này tối giản
Giả sử k là ước chung của 7n+4 và 9n+5
Ta có: 7n+4 chia hết cho k và 9n+5 chia hết cho k
=> 7( 9n+ 5 ) chia hết cho k và 9(7n+4 ) chia hết cho k
Theo tính chất của phép chia hết:
7(9n+5) - 9( 7n+4 ) = 1 chia hết cho k
Vì k là số tự nhiên mà 1 chia hết cho k thì chỉ có thể k=1
Vậy: 7n+4 / 9n+5 là phân số tối giản với mọi số tự nhiên.
Chúc pạn học tốt nhé...!
a)
Gọi d là ước chung của tử và mẫu
=> 12n + 1 chia hết cho d 60n + 5 chia hết cho d
=>
30n +2 chia hết cho d 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1 => ( đpcm )
Câu a) làm rồi mình làm câu b) nhé
\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
đặt d là UCLN( 3n - 2;4n - 3)
=> 3n - 2 : d => 12n - 8
gọi d là Ưc(3n+2; 5n+3)
\(\Leftrightarrow\)\(\frac{3n+2}{5n+3}\)=\(\frac{15n+10}{15n+9}\)
\(\Rightarrow\)d\(⋮\)1\(\Rightarrow\)d=1
vậy \(\frac{3n+2}{5n+3}\)tối giản với mọi số tự nhiên n
\(A=\frac{12n+1}{30n+2}\)
Gọi d là ƯC ( 12n+1 ; 30n+2 )
Ta có :
\(12n+1⋮d\); \(30n+2⋮d\)
\(\Rightarrow12n+1-30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+5-50n+4⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d\in\pm1\)
Kết luận : Vậy A là phân số tối giản với moin số nguyên n
Gọi d là ước chung lớn nhất của 12n+1 và 30n+2
=>(12n+1)chia hết cho d
=>(30n+2) chia hết cho d
=>5(12n+1) - 2(30n+2) chia hết cho d
=>(60n+5) - (60n+4) chia hết cho d
=> 1 chia hết cho d
=> 1=d
Vậy \(\frac{12n+1}{30n+2}\)tối giản với mọi P/s
Ý 1 tớ chịu còn 2 ý sau để tớ giúp
Gỉa sử : 12n+1 chia hết cho d ( d là ƯCLN)
30n+2 chia hết cho d
=> 5(12n+1) chia hết cho d
2(30n+2) chia hết cho d
=> 5(12n+1) - 2(30n+2) chia hết cho d
=>( 60n + 5) - (60n + 4)
=> 60n+5 - 60n-4 chia hết cho d
=> 1 chia hết cho d
=> d=1
=> 12n+1/30n+2 tối giản ( đpcm )
Gỉa sử 8n+193 chia hết cho d d nguyên tố
4n+3 chia hết cho d
=> (8n+193) - 2 ( 4n+3) chia hết cho d
=> (8n+193) - (8n+6) chia hết cho d
=> 8n+193 - 8n -6 chia hết cho d
=> 187 chia hết cho d
Do d nto =>d = 11;17
=> 8n+193 chia hết cho 11
4n+3 chia hết cho 11
=>4(8n+193) chia hết cho 11
3( 4n+3 ) chia hết cho 11
=> 32n+772 chia hết cho 11
12n+9 chia hết cho 11
=> 33n-n+11.70+2 chia hết cho 11
11n+n+11-2 chia hết cho 11
=>-n+2 chia hết cho 11
n-2 chia hết cho 11
=> n-2 chia hết cho 11
=> n-2 = 11k(k thuộc N*)
=> n= 11k+2 (1)
d=17 ta có
8n+193 chia hết cho 17
4n+3 chia hết cho 17
=>2(8n+193) chia hết cho 17
4(4n+3) chia hết cho 17
=. 16n+386 chia hết cho 17
16n+12 chia hết cho 17
=> 17n-n+17.22+12 chia hết cho 17
17n-n+12 chia hết cho 17
=> -n+12 chia hết cho 17
=> n-12 chia hết cho 17
=> n-12=17q (q thuộc N*)
=>n= 17q+12 (2)
Từ (1) và (2) => B rút gọn được khi n=11k+2 ; 17q+12
Do 150<n<170
=> n thuộc 156;165;167
Vậy n thuộc 156;165;167
để A là PS thì n-3 khác 0
=>n # 3
Để A có giá trị nguyên thì n+1 phải chia hết cho n-3
=>n-3 là Ư(n+1)
Ta có:n+1=(n-3)+4
=>n-3 là Ư(4)
TA có bảng....
Rồi đến đây bạn tự tính và kết luận là xong nhé
Gọi d= ƯCLN ( 12x+1; 36x +2)
\(\Rightarrow12x+1\) chia hết cho d và 36x +2 chia hết cho d
\(\Leftrightarrow\) 36x +3 chia hết cho d và 36x +2 chia hết cho d
\(\Rightarrow\) ( 36x+3) - (36x+2) chia hết cho d
\(\Leftrightarrow\) 1 chia hết cho d
\(\Rightarrow\) d = -1;1
Vậy p/s B= \(\frac{12x+1}{36x+2}\) tối giản
Gọi d là ƯCLN ( 12x + 1 , 36x + 2 )
=> 12x + 1 chia hết cho d và 36 x + 2 chia hết cho d