Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x4 ≥0 với mọi x
x2 ≥0 với mọi x
⇒ x4+ x2 ≥ 0
⇒ x4 +x2 +1>1
⇒Đa thức trên vô nghiệm
.
H ( x)= 4x4 + 9x2 + 2
Ta có : 4x4 \(\ge\)0
9x2 \(\ge\)0
2 > 0
\(\Rightarrow\)4x4 + 9x2 + 2 > 0
\(\Rightarrow\) H ( x) > 0
Vậy đa thức H ( x) không có nghiệm
Hok tốt ^^
Ta có :4^4+9^2 >0
4^4+9^2+2> hoặc = 2
\(\Rightarrow4x^4+9x^2+2>0\)
\(\RightarrowđathứcH\left(x\right)khongcónghiệm\)
Vì \(H\left(x\right)=2x^2+1\ge1>0\)
Nên đa thức trên vô nghiệm
\(H\left(x\right)=2^{x^2}+5^{x^3}+3-1-5^{x^3}=2^{x^2}+2>0\forall x\)
=>H(x) ko có nghiệm
TA CÓ
\(p\left(\frac{1}{2}\right)=4\cdot\left(\frac{1}{2}\right)^2-4\cdot\frac{1}{2}+1=4\cdot\frac{1}{4}-2+1\)
\(=1-2+1=0\)
vậy ......
TA CÓ
\(x^2\ge0\Rightarrow4x^2\ge0\Rightarrow4x^2+1\ge1\)hay\(4x^2+1>0\)
vậy..............
Thay \(x=\frac{1}{2}\)vào P (x) ta có:
\(P\left(\frac{1}{2}\right)=4.\left(\frac{1}{2}\right)^2-4.\frac{1}{2}+1\)
\(P\left(\frac{1}{2}\right)=4.\frac{1}{4}-2+1\)
\(P\left(\frac{1}{2}\right)=1-2+1\)
\(P\left(\frac{1}{2}\right)=0\)
Vậy \(x=\frac{1}{2}\) là nghiệm của P(x)
a, Ta có
\(D\left(x\right)=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy...
b,
Ta có
\(x^4\ge0\)
\(\Rightarrow13x^4\ge0\)
\(\Rightarrow13x^4+2\ge2\)
\(\Rightarrow13x^4+2>0\)
\(\Rightarrowđpcm\)
a. D(x)=o
tương đương: x(x-2)=0
mà x khác x-2 nên để x(x-2)=o thì
x=0 hoặc x-2=0
suy ra : x=0 hoặc x=2
vậy nghiệm của đa thức D(x) là 0 hoặc 2
b.ta thấy:
x^4>=0(với mọi x)
nên 13x^4>=0
suy ra 13x^4+2>=2
vậy đa thức P(x) không có nghiệm
Ta có:
x^4+2x^3+2x^2+1
=x^2(x^2+2x+2)+1
Ta thấy x^2(x^2+2x+2)> hoặc =0 nên
x^2(x^2+2x+2)+1>0 nên ko có nghiệm
Chúc học tốt
H(x)= \(^{-x^2-4}\)
H(x) có nghiệm khi
\(^{-x^2=4}\)
Mà \(-x^2\)\(\ge0\forall x\)
Mà 4>0
=> H(x) vô nghiệm
giả sử đa thức có nghiệm khi
\(H\left(x\right)=-x^2-4=0\)
\(\Leftrightarrow x^2+4=0\)vô lí vì \(x^2\ge0\forall x;4>0\Rightarrow x^2+4>0\)
Vậy giả sử là sai và xảy ra đpcm ( đa thức trên ko có nghiệm )