Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17=1+16
A=2^2(1+2^2+2^4+2^6+2^8+...+2^18)
A=4[(1+2^4)+2^2(1+2^4)+2^8(1+2^4)+...+2^14(1+2^4)]
A=4*17*[1+..+2^14]
\(A=2^2+2^4+2^6+...+2^{18}+2^{20}\)
<=>\(A=\left(2^2+2^4\right)+\left(2^6+2^8\right)+...\left(2^{18}+2^{20}\right)\)
<=>\(A=2\left(2+2^3\right)+2^5\left(2+2^3\right)+...+2^{17}\left(2+2^3\right)\)
<=>\(A=2.10+2^5.10+...+2^{17}.10\)
<=>\(A=10\left(2+2^5+...+2^{17}\right)\) chia hết cho 10
=> A có tận cùng bằng 0 (đpcm)
A= (22 +24)+(26+27)+...+(218+220)
A=(4+16)+(22.24+24.23)+...+(22.216+24.216)
A=20+24.(22+23)+...+216.(22+24)
A=20.1+24.(22+23)+...+216.(22+24)
A=20+(22+23).(1+24+...+216)
A=20+20.(1+24+...216)
=) 20 chia hết cho 10 nên A chia het cho 10 . Số chia hết cho 10 là số có chữ số tận cùng bằng 0
\(A=2^{22}-4\)
\(B=2^{22}=4^{11}=4.16^5\)
\(C=16^5\)
C tận cùng =6 => B tận cùng =4 => A tận cùng =0
Bài 1 :
a) A = \(8^2\) . \(32^4\) = \(\)(2\(^3\))\(^2\) . ( \(2^5\))\(^4\) = 2\(^6\) . 2\(^{20}\) = 2\(^{26}\)
b) B = 27\(^3\) . 9\(^4\) . 243 = ( \(3^3\))\(^3\) . ( \(3^2\) )\(^4\) . 3\(^5\) = 3\(^9\) . \(3^8\) . 3\(^5\) = 3\(^{22}\)
Bài 2 : So sánh
a) A = 27\(^5\) và B =2433
Ta có : 27\(^5\) =(3\(^3\))\(^5\) = 3\(^8\) = 6561
Vì 6561 > 2433 nên A > B .
b) A = 2300 và B = 3\(^{200}\)
Ta có : B = \(3^{200}\) = 3\(^8\) . 3\(^{192}\) = 6561 . 3\(^{192}\)
Vậy chắc chắn rằng B > A .
Ta có:
88 + 220
= (23)8 + 220
= 23 . 8 + 220
= 220 . 24 + 220
= 220 . (16 + 1)
= 220 . 17 \(⋮\) 17(đpcm)
Bài 1.
Đặt (12n + 1; 30n + 2) = d
\(\Rightarrow\) \(\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}60n+5⋮d\\60+4⋮d\end{matrix}\right.\)
\(\Rightarrow\) (60n + 5) - (60n + 4) \(⋮\) d
\(\Rightarrow\) 1 \(⋮\) d
\(\Rightarrow\) d = 1
\(\Rightarrow\) (12n + 1; 30n + 2) = 1
Vậy phân số \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
Giải
Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{20^2}< \dfrac{1}{19.20}\)
\(\Rightarrow\)D < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{19.20}\)
Nhận xét: \(\dfrac{1}{1.2}=1-\dfrac{1}{2};\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{19.20}=\dfrac{1}{19}-\dfrac{1}{20}\)
\(\Rightarrow\) D< 1- \(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{19}-\dfrac{1}{20}\)
D< 1 - \(\dfrac{1}{20}\)
D< \(\dfrac{19}{20}\)<1
\(\Rightarrow\)D< 1
Vậy D=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{5^2}\)<1
A=\(\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
A=\(\dfrac{1}{2^2.1}+\dfrac{1}{2^2.2^2}+\dfrac{1}{3^2.2^2}+...+\dfrac{1}{50^2.2^2}\)
A=\(\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{50^2}\right)\)
\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2.2}+\dfrac{1}{3.3}+...+\dfrac{1}{50.50}\right)\)
Ta có :
\(\dfrac{1}{2.2}< \dfrac{1}{1.2};\dfrac{1}{3.3}< \dfrac{1}{2.3};\dfrac{1}{4.4}< \dfrac{1}{3.4};...;\dfrac{1}{50.50}< \dfrac{1}{49.50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\right)\)Nhận xét :
\(\dfrac{1}{1.2}< 1-\dfrac{1}{2};\dfrac{1}{2.3}< \dfrac{1}{2}-\dfrac{1}{3};...;\dfrac{1}{49.50}< \dfrac{1}{49}-\dfrac{1}{50}\)
\(\Rightarrow A< \dfrac{1}{2^2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{2^2}\left(1-\dfrac{1}{50}\right)\)
A<\(\dfrac{1}{4}.\dfrac{49}{50}\)<1
A<\(\dfrac{49}{200}< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{2}\)
Đề sai rồi bạn