K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài làm

Ta có: ( a - b )2 < 2( a2 + b2 )

<=> a2 - 2ab + b2 < 2a2 + 2b2 

<=> a2 - 2a2 - 2ab + b2 - 2b2 < 0

<=> -a2 - 2ab - b2 < 0

<=> -( a2 + 2ab + b2 ) < 0

<=> -( a + b )2 . ( -1 ) > 0 . ( -1 )

<=>  ( a + b )2 > 0 V a, b ( luôn đúng )

Vậy ( a - b )2 < 2( a2 + b2 ) ( đpcm )

20 tháng 3 2018

2.

\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )

Tương tự.......................

20 tháng 3 2018

1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)

Lại có: b - a < 0 ( a > b)

ab >0 ( a>0, b > 0)

\(\Rightarrow\dfrac{b-a}{ab}< 0\)

Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)

2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b

3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)

Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b

28 tháng 5 2020

a) 1 + m < 2 + m

Từ 1 < 2 , cộng cả hai vế với m ta có :

            1 + m < 2 + m 

b) m - 2 < 3 + m

Từ -2 < 3 , cộng cả hai vế với m ta có :

            -2 + m < 3 + m

   hay    m - 2 < 3 + m

 #hoktot<3# 

13 tháng 4 2016

vì a+b=6 nên a,b<=6 

a0123456
b6543210

=> ab<=9

11 tháng 3 2017

a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3

b vì a>3 => a+2>3+2  =>a+2>5

c  vì m>n =>m-n>n-n=>m-n>0

đ vì m-n=0 =>m-n+n>0+n=>m>n

e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)

  vì -4>-5 => m-4>m-5 (2)

từ (1) và (2) =>m-5<n-4

5 tháng 5 2017

a. Do \(a>0,\) \(b>0\) \(\Rightarrow a,b\) là số dương

Ta có:

* \(a< b\Leftrightarrow a^2< ab\) (nhân cả hai vế với a)

* \(a< b\Leftrightarrow ab< b^2\) (nhân cả hai vế với b)

b. Từ câu a theo tính chất bắc cầu suy ra:\(a^2< b^2\)

Ta có: \(a^2< b^2\Leftrightarrow a^3< ab^2\) (nhân cả hai vế với a)

ab2<b3 (a<b)

\(\Rightarrow a^3< b^3\)

5 tháng 9 2017

(ax+by)2 \(\le\) (a2+b2)(x2+y2)

Xét hiệu (a2+b2)(x2+y2) - (ax+by)2

= (ax2+a2y2+b2x2+b2y2) - (a2x2 + b2y2 + 2axby)

= a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - b2y2 - 2axby

= a2y2 + b2x2 - 2axby

= (ay-bc)2 \(\ge\) 0

=> (ax+by)2 \(\le\) (a2+b2)(x2+y2)