Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
a) Ta có: \(\dfrac{m^2+2m+1}{m^2-1}\)
\(=\dfrac{\left(m+1\right)^2}{\left(m+1\right)\left(m-1\right)}\)
\(=\dfrac{m+1}{m-1}\)
b) Ta có: \(\dfrac{2a^4+3a^3+2a+3}{\left(a^2-a+1\right)\left(4a+6\right)}\)
\(=\dfrac{a^3\left(2a+3\right)+\left(2a+3\right)}{\left(a^2-a+1\right)\left(4a+6\right)}\)
\(=\dfrac{\left(2a+1\right)\left(a+1\right)\left(a^2-a+1\right)}{2\left(a^2-a+1\right)\left(2a+3\right)}\)
\(=\dfrac{a+1}{2}\)
a) (m+1)^2>=4m
<=>(m+1)*(m+1)>=4m
=>m2+m+m2+m>=4m
=>2m2+2m>=4m
=>2(m2+m)>=4m
xét m=0=>2(02+0)=4*0
=>2(m2+m)=4m (1)
xét m\(\ne\)0 vì m2+m=4m với mọi m
=>2(m2+m)>4m (2)
từ (1) và (2)=>(m+1)^2>=4m
a: \(\Leftrightarrow m^2-6m+9-m^2+6m>0\)
=>9>0(luôn đúng)
b: \(\Rightarrow25m^2+20m+5m+4>25m^2+25m\)
=>4>0(luôn đúng)
a. Ta có: m<n
<=> 2m<2n (nhân cả hai vế với 2)
<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm
b. Ta có: m<n
<=> m-2<n-2 (cộng cả hai vế với -2)
<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm
c. Ta có: m<n
<=> -6m>-6n (nhân cả hai vế với -6)
<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm
d. Ta có: m<n
<=> 4m<4n (nhân cả hai vế với 4)
<=> 4m+1<4n+1 (cộng cả hai vế với 1)
mà 4n+1<4n+5
=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)
Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
a) 1 + m < 2 + m
Từ 1 < 2 , cộng cả hai vế với m ta có :
1 + m < 2 + m
b) m - 2 < 3 + m
Từ -2 < 3 , cộng cả hai vế với m ta có :
-2 + m < 3 + m
hay m - 2 < 3 + m
#hoktot<3#