Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abba = a00a + bb0
= a x 1001 + b x 110
= a x 11 x 91 + b x 11 x 10
= 11 x (a x 91 + b x 10)
=> abba chia hết 11
=> số có dạng abba là bội của 11
Ta có:abba=1000a+100b+10b+1a
=1001a+110b
Vì 1001 \(⋮\)11 nên 1001a chia hết cho 11
Vì 110\(⋮\)11 nên 110b chia hết cho 11
Vì 1001a chia hết cho 11 và 110b chia hết cho 11 nên:
1001a+110b\(⋮\)11
hay abba\(⋮\)11
Vậy abba là bội của 11
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)
\(3A=1-\frac{1}{64}\)
\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)
A=(n+1)n:2
Mà n(n+1) tận cùng là 0,2,6
Nên A t/c khác 2,4,7,9 vì khi nhân 2 lên thì t/c là 4,8,4,8 khác với 0,2,6
Ta có công thức: \(A=1+2+...+n=\frac{\left(n+1\right).n}{2}\)
Mà n(n + 1) chỉ có thể có chữ số tận cùng là 0, 2, 6 nên A chỉ có thể có chữ số tận cùng là 0, 1, 3, 5, 6, 8.
Vậy A không thể có tận cùng là chữ số 2, 4, 7, 9.
Tổng A có n số hạng nên
A= 1+ 2+ 3 +...+n = (n+1)xn : 2
lại có: nx(n+1) là tích 2 STN liên tiếp nên nx(n+1) chỉ có thể có tận cùng là 0, 2 hoặc 6
Vì thế nên (n+1)xn : 2 chỉ có thể có tận cùng là 0; 5; 1; 6; 3 hoặc 8
Vậy tổng A=1+2+...+n không thể có tận cùng là 2,4,7,9
Tổng A có n số hạng nên A= 1+ 2+ 3 +...+n = (n+1)xn : 2 lại có: nx(n+1) là tích 2 STN liên tiếp nên nx(n+1) chỉ có thể có tận cùng là 0, 2 hoặc 6 Vì thế nên (n+1)xn : 2 chỉ có thể có tận cùng là 0; 5; 1; 6; 3 hoặc 8 Vậy tổng A=1+2+...+n không thể có tận cùng là 2,4,7,9
c, Ta có ab+ba = 10a + 10b + a + b=11a + 11b
Vậy ab+ba chia hết cho 11
a) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10 x a + b) - (10 x b + a)
= (10 x a - a) - (10 x b - b)
= 9 x a - 9 x b
= 9 x (a - b) \(⋮\)9
=> (ab - ba) \(⋮\)9 (đpcm)
b) Ta có : ab + ba = a0 + b + b0 + a
= 10 x a + b + b x 10 + a
= (10 x a + a) + (10 x b + b)
= 11 x a + 11 x b
= 11 x (a + b) \(⋮\)11
=> (ab + ba) \(⋮\)11 (đpcm)
a) Vì tổng tận cùng là 0 nên chia hết cho 2;5
b) Vì ba số tự nhiên liên tiếp luôn luôn có số chẵn ba số tự nhiên liên tiếp luôn luôn có 1 số chia hết cho 3
nên chia hết cho 2 ;3
Tích đúng nha
A=38+92
=38+(32)2
=38+34
=34.(34+1)
=34.82
=34.2.41 chia hết cho 41
Vậy A chia hết cho 41 hay A là bội của 41.