Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5: GTNN chứ nhỉ?
Với mọi gt của \(x;y\in R\) ta có:
\(x^2+3\left|y-2\right|+1\ge1\)
Hay \(A\ge1\) với mọi gt của \(x;y\in R\)
Dấu "=" sảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
Vậy..................
Bài 6: GTLN chứ?
Với mọi giá trị của \(x\in R\) ta có:
\(-\left(2x-1\right)^2\le0\Rightarrow-5-\left(2x-1\right)^2\le-5\)
Hay \(B\le5\) với mọi giá trị của \(x\in R\)
Dấu "=" sảy ra khi và chỉ khi \(x=\dfrac{1}{2}\)
Vậy...................
Bài 4 :
\(a,3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}.26=3^{12}.2.13⋮\left(đpcm\right)\)
\(b,8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)
Bài 5 :
\(A=1^2+3^2+6^2+9^2+.............+39^2\)
\(=1+3^2+\left(6^2+9^2+.........+39^2\right)\)
\(=10+3^2\left(2^2+3^2+.........+13^2\right)\)
\(=10+3^2.818\)
\(=10+9.818\)
\(=7372\)
a) 106 - 57
= 26 . 56 - 57
= 56 . (26 - 5)
= 56 . (64 - 5)
= 56 . 59 chia hết cho 59
=> đpcm
b) 817 - 279 - 913
= (34)7 - (33)9 - (32)13
= 328 - 327 - 326
= 326 .(32 - 3 - 1)
= 326 . (9 - 3 - 1)
= 324 . 32 . 5
= 324 . 9 . 5
= 324 . 45 chia hết cho 45
=> đpcm
c) 87 - 218
= (23)7 - 218
= 221 - 218
= 218 . (23 - 1)
= 218 (8 - 1)
= 217 . 2 . 7
= 217 . 14 chia hết cho 14
=> đpcm
d) 109 + 108 + 107
= 107 . (102 + 10 + 1)
= 57 . 27 . (100 + 10 + 1)
= 57 . 26 . 2 . 111
= 57 . 26 . 222 chia hết cho 222
=> đpcm
\(a,\frac{-8}{15}.\left(-30\right).\frac{15}{-8}.\frac{9}{10}\)
\(=-\left(\frac{8}{15}.\frac{15}{8}\right).\left(30.\frac{9}{10}\right)\)
\(=-1.27
=-27\)
\(b,2\frac{1}{18}.\frac{23}{24}.\frac{9}{37}.\frac{48}{-15}\)
\(=\frac{-37.23.9.48}{18.24.37.15}=\frac{23}{15}\)
c, chịu rồi
\(a,\frac{20^{12}\cdot6^{14}}{8^{13}\cdot15^{12}}\)
\(=\frac{5^{12}\cdot2^{24}\cdot2^{14}\cdot3^{14}}{2^{39}\cdot3^{12}\cdot5^{12}}\)
\(=\frac{5^{12}\cdot2^{38}\cdot3^{14}}{2^{39}\cdot3^{12}\cdot5^{12}}=\frac{3^2}{2}=\frac{9}{2}\)
\(b,\frac{45^{12}\cdot10^{14}}{18^{13}\cdot25^{12}}\)
\(=\frac{5^{12}\cdot3^{24}\cdot2^{14}\cdot5^{14}}{2^{13}\cdot3^{26}\cdot5^{24}}\)
\(=\frac{5^{26}\cdot3^{24}\cdot2^{14}}{2^{13}\cdot3^{26}\cdot5^{24}}=\frac{5^2\cdot2}{3^2}=\frac{50}{9}\)
\(c,\frac{18^{12}\cdot27^8}{6^8\cdot3^{40}}\)
\(=\frac{2^{12}\cdot3^{24}\cdot3^{24}}{2^8\cdot3^8\cdot3^{40}}\)
\(=\frac{2^{12}\cdot3^{48}}{2^8\cdot3^{48}}=2^4=16\)
\(d,\frac{12^{14}\cdot9^{18}}{8^9\cdot27^{17}}\)
\(=\frac{3^{14}\cdot2^{28}\cdot3^{36}}{2^{27}\cdot3^{51}}\)
\(=\frac{3^{50}\cdot2^{28}}{2^{27}\cdot3^{51}}=\frac{2}{3}\)
làm hơi tắt nên chịu khó hiểu
\(a,7^6+7^5-7^4=7^4\left(7^2+7-1\right)\\ =7^4\cdot55\\ \Rightarrow7^6+7^5-7^4⋮55\)
\(b,3^{n+2}-2^{n+2}+3^n-2^n\\ =3^n\cdot3^2+3^n-2^n\cdot2^2-2^n\\ =3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\\ =3^n\cdot10-2^{n-1}\cdot2\cdot5\\ =10\cdot\left(3^n-2^{n-1}\right)\\ \Rightarrow3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
\(c,8^7-2^{18}=8^7-\left(2^3\right)^6\\ =8^7-8^6\\ =8^6\cdot\left(8-1\right)\\ =8^5\cdot8\cdot7\\ =8^5\cdot4\cdot14\\ \Rightarrow8^7-2^{18}⋮14\)
a, Ta có :
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.2.7\)
\(=2^{17}.14⋮14\)
\(\Leftrightarrow8^7-2^{18}⋮14\rightarrowđpcm\)
b, \(10^6-5^7\)
\(=\left(2.5\right)^6-5^7\)
\(=2^6.5^6-5^7\)
\(=2^6.5^6-5^6.5\)
\(=5^6\left(2^6-5\right)\)
\(=5^6.59⋮59\)
\(\Leftrightarrow10^6-5^7⋮59\rightarrowđpcm\)
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.2^3-2^{18}.1\)
\(=2^{18}.\left(2^3-1\right)\)
\(=2^{18}.7\)
\(=2^{17}.14⋮14\rightarrowđpcm\)
\(10^6-5^7\)
\(=\left(2.5\right)^6-5^7\)
\(=2^6.5^6-5^7\)
\(=64.5^6-5^6.5\)
\(=5^6\left(64-5\right)\)
\(=5^6.59⋮59\rightarrowđpcm\)
TA CÓ: \(8^7-2^{18}=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}.2^3-2^{18}\)
\(=2^{18}.\left(2^3-1\right)\)
\(=2^{18}.7\)
\(\Rightarrow8^7-2^{18}⋮2,7\) MÀ ƯỚC CHUNG LỚN NHẤT CỦA 2,7 LÀ 1 \(\Rightarrow8^7-2^{18}⋮14\)