Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(5n - 2)2 - (2n - 5)2
= 25n2 - 20n + 4 - 4n2 + 20n - 25
= 21n2 - 21
= 21(n2 - 1) \(⋮\) 21 (đpcm)
Mình nhanh nhất, chọn mình nha
bài 1:
\(\frac{2n^2+5n-1}{2n-1}=\frac{2n^2-n+6n-3+2}{2n-1}=\frac{n\left(2n-1\right)+3\left(2n-1\right)+2}{2n-1}=n+3+\frac{2}{2n-1}\)
Để \(2n^2+5n-1⋮2n-1\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
<=>2n thuộc {2;0;3;-1}
<=>n thuộc {1;0;3/2;-1/2}
Mà n thuộc Z
=> n thuộc {1;0}
bài 2 sửa đề x5-5x3+4x
Ta có: \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left(x^4-x^2-4x^2+4\right)=x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]\)
\(=x\left(x^2-4\right)\left(x^2-1\right)=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
Vì x(x-1)(x+1)(x+2)(x-2) là tích 5 số nguyên liên tiếp nên tích này chia hết cho 3,5,8
Mà (3,5,8)=1
=>\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)⋮3.5.8=120\)
=>đpcm
a) (5n - 2)2 - (2n - 5)2
= (5n - 2 - 2n + 5) (5n - 2 + 2n - 5)
= (3n + 3) (7n - 7)
= 21n2 - 21n + 21n - 21
= 21n2 - 21 \(⋮\) 21
Vậy: 21n2 - 21 \(⋮\) 21 vs n \(\in\) Z
b) Gọi 2 số lẻ liên tiếp là 2x + 1 ; 2x + 3
Hiệu bình phương của 2 số lẻ liên tiếp là:
(2x + 1)2 - (2x + 3)2
= (2x + 1 - 2x - 3) (2x + 1 +2x + 3)
= -2.(4x + 4)
= -2.4(x + 1)
= -8(x + 1) \(⋮\) 8
Vậy: hiệu bình phương của 2 số lẻ liên tiếp \(⋮\) 8
\(4x^3-36x=0\)
\(x.\left[\left(2x\right)^2-6^2\right]=0\)
\(x.\left(2x-6\right)\left(2x+6\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)
KL:...............................................
n^2.(n+1) + 2n.(n+1)
=(n+1). (n^2 + 2n)
= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)
n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)
Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.
=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.
Mà (2,3) = 1
=> n(n + 1)(n + 2) chia hết cho 6
=> n2.(n+1)+2n.(n+1) chia hết cho 6
Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)
\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)
\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)
(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7
=6n2-12
=3(2n-4)
=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n
(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)
=5n2-17n-12-5n2-3n+2
=-20n-10
=5(-4n-2)
=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n
a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\), \(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)
Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)
Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0
b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)
\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)
\(=n\left(n+1\right)\left(2n+1\right)\)
Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3
Đặt n=3k+1 và n=3k+2. Tự thế vài và CM
c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)
\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)
\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)
Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
Dễ thấy đẳng thức trên chia hết cho 5
Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)
Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)
Và tích của hai số bất kì cũng chia hết cho 2
Vậy đẳng thức trên chia hết cho 3.4.2.5=120
Cậu cuối bn chứng minh cách tương tự. :)
(5n-2)2-(2n-5)2=(5n-2-2n+5)(5n-2+2n-5)=(3n+3)(7n-7)=21(n+1)(n-1) luôn luôn chia hết cho 21