K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

(5n-2)2-(2n-5)2=(5n-2-2n+5)(5n-2+2n-5)=(3n+3)(7n-7)=21(n+1)(n-1) luôn luôn chia hết cho 21

5 tháng 8 2019

(5n - 2)2 - (2n - 5)2

= 25n2 - 20n + 4 - 4n2 + 20n - 25

= 21n2 - 21

= 21(n2 - 1) \(⋮\) 21 (đpcm)

Mình nhanh nhất, chọn mình nha

3 tháng 12 2018

bài 1:

\(\frac{2n^2+5n-1}{2n-1}=\frac{2n^2-n+6n-3+2}{2n-1}=\frac{n\left(2n-1\right)+3\left(2n-1\right)+2}{2n-1}=n+3+\frac{2}{2n-1}\)

Để \(2n^2+5n-1⋮2n-1\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

<=>2n thuộc {2;0;3;-1}

<=>n thuộc {1;0;3/2;-1/2}

Mà n thuộc Z

=> n thuộc {1;0}

bài 2 sửa đề x5-5x3+4x

Ta có: \(x^5-5x^3+4x=x\left(x^4-5x^2+4\right)=x\left(x^4-x^2-4x^2+4\right)=x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]\)

\(=x\left(x^2-4\right)\left(x^2-1\right)=x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)

Vì x(x-1)(x+1)(x+2)(x-2) là tích 5 số nguyên liên tiếp nên tích này chia hết cho 3,5,8

Mà (3,5,8)=1

=>\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-2\right)⋮3.5.8=120\)

=>đpcm

5 tháng 8 2019

a) (5n - 2)2 - (2n - 5)2

= (5n - 2 - 2n + 5) (5n - 2 + 2n - 5)

= (3n + 3) (7n - 7)

= 21n2 - 21n + 21n - 21

= 21n2 - 21 \(⋮\) 21

Vậy: 21n2 - 21 \(⋮\) 21 vs n \(\in\) Z

b) Gọi 2 số lẻ liên tiếp là 2x + 1 ; 2x + 3

Hiệu bình phương của 2 số lẻ liên tiếp là:

(2x + 1)2 - (2x + 3)2

= (2x + 1 - 2x - 3) (2x + 1 +2x + 3)

= -2.(4x + 4)

= -2.4(x + 1)

= -8(x + 1) \(⋮\) 8

Vậy: hiệu bình phương của 2 số lẻ liên tiếp \(⋮\) 8

5 tháng 8 2019

\(\left(2n+3\right)^2-\left(2n+1\right)^2=4n^2+12n+9-4n^2-4n-1=8n+8=8\left(n+1\right)⋮8\left(\text{đ}pcm\right)\)\(\left(5n-2\right)^2-\left(2n-5\right)^2=25n^2-20n+4-4n^2+20n-25=21n^2-21=21\left(n^2-1\right)⋮21\left(\text{đ}pcm\right)\)

28 tháng 7 2018

\(4x^3-36x=0\)

\(x.\left[\left(2x\right)^2-6^2\right]=0\)

\(x.\left(2x-6\right)\left(2x+6\right)=0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)

KL:...............................................

tích mình với

ai tích mình

mình tích lại

thanks

16 tháng 7 2015

     n^2.(n+1) + 2n.(n+1)

=(n+1). (n^2 + 2n)

= (n+1).n.(n+2) chia hết cho 6 (tích 3 số tự nhiên liên tiếp chia hết cho 6)

16 tháng 7 2015

n2.(n + 1) + 2n.(n + 1) = (n2 + 2n)(n + 1) = n(n + 1)(n + 2)

Vì n(n + )(n + 2) là tích của 3 số nguyên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3.

=> Tích n(n + 1)(n + 2) chia hết cho 2 và 3.

Mà (2,3) = 1

=> n(n + 1)(n + 2) chia hết cho 6

=> n2.(n+1)+2n.(n+1) chia hết cho 6

8 tháng 10 2018

Ta có: \(\left(5n-2\right)^2-\left(2n-5\right)^2=\left(5n-2-2n+5\right).\left(5n-2+2n-5\right)\)

\(=\left(3n+3\right)\left(7n-7\right)=3\left(n+1\right).7\left(n-1\right)\)

\(=21\left(n^2-1\right)⋮21\) (điều phải chứng minh)

17 tháng 6 2015

(3n-5)(2n+1)+7(n-1)=6n2-7n-5+7n-7

                           =6n2-12

                           =3(2n-4)

=>(3n-5)(2n+1)+7(n-1) chia hết cho 3, với mọi n

(n-4)(5n+3)-(n+1)(5n-2)+4=5n2-17n-12-(5n2+3n-2)

 =5n2-17n-12-5n2-3n+2

=-20n-10

=5(-4n-2)

=>(n-4)(5n+3)-(n+1)(5n-2)+4 chia hết cho 5, với mọi n

trieu dang làm đúng rùi

5 tháng 8 2018

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Mik cảm ơn bn nhìu nha!!!!^-^!!!