Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{101}{2}\times\frac{102}{2}\times\frac{103}{2}\times...\times\frac{200}{2}\)
\(=\frac{1.2.3.....100.101.102.103.....200}{1.2.3.....100.2^{100}}\)
\(=\frac{\left(1.3.5.....199\right).\left(2.4.6.....200\right)}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}\)
\(=1.3.5.....199\)
1.3.5.....197.199 = \(\frac{\left(1.3.5.....197.199\right)\left(2.4.6.....198.200\right)}{2.4.6......198.200}\)= \(\frac{1.2.3......199.200}{2^{100}.\left(1.2.3.....100\right)}=\frac{101.102.103......200}{2^{100}}=\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}\)
Ta có :
\(1.3.5.7.....199\)
\(=\frac{1.2.3.4.5.6.7.....198.199.200}{2.4.6.....198.200}\)
\(=\frac{\left(1.2.3.....99.100\right)\left(101.102.....200\right)}{\left(1.2.3.....99.100\right)\left(2.2.2.....2.2\right)}\)
\(=\frac{101.102.....200}{2.2.....2}\)
\(=\frac{101}{2}.\frac{102}{2}.....\frac{200}{2}\left(đpcm\right)\)
#)Giải :
Ta có : \(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}=\frac{101.102.103.....200}{2^{100}}=\frac{\left(101.102.103.....200\right)\left(1.2.3.....100\right)}{2^{100}\left(1.2.3.....100\right)}\)
\(=\frac{1.2.3.....200}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.100\right)}=\frac{\left(1.3.5.....99\right)\left(2.4.6.....100\right)}{2.4.6.....200}=1.3.5.....99\left(đpcm\right)\)
Ta có : 1.3.5.7.....199 = \(\frac{\left(1.3.5.7.....199\right).\left(2.4.6.8.....200\right)}{2.4.6.8.....200}=\frac{1.2.3.4.5.....199.200}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}=\frac{1.2.3.4.5.....199.200}{2^{100}.1.2.3.....100}=\frac{101.102.103.....200}{2^{100}}\)\(=\frac{101}{2}.\frac{102}{2}\frac{103}{2}.....\frac{200}{2}\)\( \left(ĐPCM\right)\)
a) dat A=1+2+22+23+...+299
2.A=2+22+23+24+...+2100
2.A-A= 2+23+24+...+2100-(1+2+22+23+...+299)
A=2100-1
----> 1.3.5.7...197.199<\(\frac{101.102.103....200}{2^{100}-1}\)
Dat B =1.3.5.7...197.199
B=\(\frac{1.3.5.7....197.199...2.4.6.8....200}{2.4.6.8....200}\)
B= \(\frac{1.2.3.4.5....199.200}{2.4.6.8....200}\)
B=\(\frac{1.2.3.4.5......199.200}{2^{100}.\left(1.2.3.4...100\right)}\) ( tu 2 den 200 co 100 so hang nen duoc 2100)
B =\(\frac{101.102.103....200}{2^{100}}\)
---->\(\frac{101.102.103....200}{2^{100}}<\frac{101.102.103....200}{2^{100}-1}\)
ta co : 2100 >2100-1
--->\(\frac{1}{2^{100}}<\frac{1}{2^{100}-1}\)
---> \(\frac{101.102.103...200}{2^{100}}<\frac{101.102.103...200}{2^{100}-1}\)
----> dpcm
b> A= \(\frac{1.3.5.7....2499}{2.4.6.8....2500}\) chon B=\(\frac{2.4.6.8...2500}{3.5.7.9...2501}\)
A.B = \(\frac{1.3.5.7....2499.2.4.6.8...2500}{2.4.6.8...2500.3.5.7.....2499.2501}=\frac{1}{2501}\)
Nhan xet
\(\frac{1}{2}+\frac{1}{2}=1\)
\(\frac{2}{3}+\frac{1}{3}=1\)
vi 1/2 >1/3----> 1/2 <2/3
cm tuong tu ta se co A<B
---> A.A<A.B
---->A2<A.B
===> A2 <\(\frac{1}{2501}<\frac{1}{2500}=\frac{1}{50^2}\)
==> A2<1/502
--> A <1/50
ma 1/50<1/49
nen A<1/49
--> A < 1/72
---> A. (-1) >(-1).1/72
---> -A>-1/72
\(\dfrac{101}{2}.\dfrac{102}{2}.\dfrac{103}{2}.\dfrac{104}{2}.....\dfrac{200}{2}\\ =\dfrac{101.102.103.104.....200}{2^{100}}\\ =\dfrac{\left(101.102.103.....200\right)\left(1.2.3.....100\right)}{2^{100}.\left(1.2.3.....100\right)}\\ =\dfrac{1.2.3.....200}{\left(2.1\right)\left(2.2\right)\left(2.3\right).....\left(2.100\right)}\\ =\dfrac{\left(1.3.5.....199\right)\left(2.4.6.....200\right)}{4.6.8.....200}\\ =1.3.5.7.....197.199\)
=> Điều phải chứng minh
hay