\(\frac{101}{2}+\frac{102}{2}+\frac{103}{2}+........+\frac{200}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2015

1.3.5.....197.199 = \(\frac{\left(1.3.5.....197.199\right)\left(2.4.6.....198.200\right)}{2.4.6......198.200}\)\(\frac{1.2.3......199.200}{2^{100}.\left(1.2.3.....100\right)}=\frac{101.102.103......200}{2^{100}}=\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}\)

19 tháng 3 2018

cậu giỏi quá

2 tháng 8 2019

#)Giải :

Ta có : \(\frac{101}{2}.\frac{102}{2}.\frac{103}{2}.....\frac{200}{2}=\frac{101.102.103.....200}{2^{100}}=\frac{\left(101.102.103.....200\right)\left(1.2.3.....100\right)}{2^{100}\left(1.2.3.....100\right)}\)

\(=\frac{1.2.3.....200}{\left(2.1\right)\left(2.2\right)\left(2.3\right)...\left(2.100\right)}=\frac{\left(1.3.5.....99\right)\left(2.4.6.....100\right)}{2.4.6.....200}=1.3.5.....99\left(đpcm\right)\)

Ta có : 1.3.5.7.....199 = \(\frac{\left(1.3.5.7.....199\right).\left(2.4.6.8.....200\right)}{2.4.6.8.....200}=\frac{1.2.3.4.5.....199.200}{\left(1.2\right).\left(2.2\right).\left(3.2\right).....\left(100.2\right)}=\frac{1.2.3.4.5.....199.200}{2^{100}.1.2.3.....100}=\frac{101.102.103.....200}{2^{100}}\)\(=\frac{101}{2}.\frac{102}{2}\frac{103}{2}.....\frac{200}{2}\)\( \left(ĐPCM\right)\)

20 tháng 4 2016

1233333333333

12 tháng 3 2019

ta có 

\(\frac{1}{300}< \frac{1}{101}\)\(\frac{1}{300}< \frac{1}{102}\)\(\frac{1}{300}< \frac{1}{102}\)....\(\frac{1}{300}< \frac{1}{299}\)

\(\frac{1}{300}+\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}< \frac{1}{101}+\frac{1}{102}+...+\frac{1}{300}\)

\(\frac{200}{300}< \frac{1}{101}+\frac{1}{102}+...+\text{​​}\text{​​}\)

rút gọn là xong

14 tháng 8 2015

a) dat A=1+2+22+23+...+299

2.A=2+22+23+24+...+2100

2.A-A= 2+23+24+...+2100-(1+2+22+23+...+299)

A=2100-1

----> 1.3.5.7...197.199<\(\frac{101.102.103....200}{2^{100}-1}\)

Dat B =1.3.5.7...197.199 

B=\(\frac{1.3.5.7....197.199...2.4.6.8....200}{2.4.6.8....200}\)

B= \(\frac{1.2.3.4.5....199.200}{2.4.6.8....200}\)

B=\(\frac{1.2.3.4.5......199.200}{2^{100}.\left(1.2.3.4...100\right)}\) ( tu 2 den 200 co 100 so hang nen duoc 2100)

B =\(\frac{101.102.103....200}{2^{100}}\)

---->\(\frac{101.102.103....200}{2^{100}}<\frac{101.102.103....200}{2^{100}-1}\)

ta co : 2100 >2100-1

--->\(\frac{1}{2^{100}}<\frac{1}{2^{100}-1}\)

---> \(\frac{101.102.103...200}{2^{100}}<\frac{101.102.103...200}{2^{100}-1}\)

----> dpcm

14 tháng 8 2015

b> A= \(\frac{1.3.5.7....2499}{2.4.6.8....2500}\)  chon B=\(\frac{2.4.6.8...2500}{3.5.7.9...2501}\)

A.B = \(\frac{1.3.5.7....2499.2.4.6.8...2500}{2.4.6.8...2500.3.5.7.....2499.2501}=\frac{1}{2501}\)

Nhan xet 

\(\frac{1}{2}+\frac{1}{2}=1\)

\(\frac{2}{3}+\frac{1}{3}=1\)

vi 1/2 >1/3----> 1/2 <2/3

cm tuong tu ta se co A<B

---> A.A<A.B

---->A2<A.B

===> A2 <\(\frac{1}{2501}<\frac{1}{2500}=\frac{1}{50^2}\)

==> A2<1/502

--> A <1/50

ma 1/50<1/49

nen A<1/49

--> A < 1/72

---> A. (-1) >(-1).1/72

---> -A>-1/72

 

18 tháng 4 2018

đề sai nhé \(A>\frac{7}{12}\) mới đúng 

18 tháng 4 2018

Dùng phương pháp CASIO fx 570 ES PLUS thì ta chứng minh được \(A< \frac{7}{12}\)

18 tháng 3 2018

Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Ta có đpcm

18 tháng 3 2018

Bạn Trí làm sai rồi!

Đề bài không yêu cầu chứng minh như bạn