Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
Ta có : abcdeg=10000ab + 100cd + eg
= 9999ab + ab + 99cd+ cd + eg
= 9999ab+99cd+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và đầu bài cho ab+cd+eg chia hết cho 11
=>abcdeg chie hết cho 11
ta có:abcdeg=ab.10000+cd.100+eg
=ab.11.909+ab+cd.11.9+cd+eg
=(ab.909+cd.9).11+(ab+cd+eg)
vì (ab.909+cd.9).11\(⋮\)11
và (ab+cd+eg)
a) ab - ba = a .10+b - (b .10+a)
= a .10+b - b .10 - a
=( a .10 - a)-(b.10-b)
= a.9-b.9
= 9.(a-b) chia het cho 9
b) abcd = ab .100 +cd
= ab .99 +ab+cd
= ab .11 . 9 +(ab+cd)
vì ab .11 .9 chia hết cho 11 nên nếu ab+cd chia hết cho 11 thì abcd chia hết cho 11
b)Ta có:abcd=ab.100+cd
=ab.99+ab+cd
=ab.11.99+(ab+cd)
Vì 11\(⋮\)11=>ab.11.9 chia hết cho 11
=>(ab+cd)chia hết cho 11
Vậy abcd chia hết cho 11
k mik nha
abcd= ab.100 + cd = 2.cd.100 + cd = 201.cd ( vì 201:67=3 nên 201.cd chia hết cho 67 )
vậy ab=2.cd thì abcd chia hết cho 67
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
abcd=100ab+cd=99ab+ab+cd
99ab chia hết cho 11;ab+cd chia hết cho 11
=>abcd chia hết cho 11
=>đpcm
Ta có ab + cd chia hết cho 11 nên ab + cd = 11k (k \(\in\) N*)
Do đó abcd = ab . 100 + cd = ab . 99 + ab + cd = ab . 9 . 11 + 11k = 11.(ab . 9 + k) chia hết cho 11
Ta có: abcd = 100ab + cd = 99ab + ab + cd
Vì 99 chia hết cho 11 => 99ab chia hết cho 11 mà ab + cd chia hết cho 11 => 99ab + ab + cd chia hết cho 11 hay abcd chia hết cho 11 (đpcm)