Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Đặt: \(A=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+....+\frac{1}{100^2}\)
\(=\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+\frac{1}{6.6}+....+\frac{1}{100.100}\)
\(A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< \frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow A< \frac{49}{100}< \frac{50}{100}=\frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2}\)
Vậy:.............
Câu 2:
\(\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{98}+1\right)\left(\frac{1}{99}+1\right)\)
\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{98}+\frac{98}{98}\right)\left(\frac{1}{99}+\frac{99}{99}\right)\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{99}{98}.\frac{100}{99}\)
\(=\frac{3.4.5....99.100}{2.3.4...98.99}\)
\(=\frac{100}{2}=50\)
a)\(11\frac{1}{4}-\left(2\frac{5}{7}+5\frac{1}{4}\right)\)
\(=\frac{45}{4}-\left(\frac{19}{7}+\frac{21}{4}\right)\)
\(=\frac{45}{4}-\left(\frac{76}{28}+\frac{147}{28}\right)\)
\(=\frac{45}{4}-\frac{223}{28}\)
\(=\frac{315}{28}-\frac{223}{28}\)
\(=\frac{23}{7}\)
b) \(\left(8\frac{5}{11}+3\frac{5}{8}\right)-3\frac{5}{11}\)
\(=\left(\frac{93}{11}+\frac{29}{8}\right)-\frac{38}{11}\)
\(=\left(\frac{744}{88}+\frac{319}{88}\right)-\frac{38}{11}\)
\(=\frac{1063}{88}-\frac{38}{11}=\frac{1063}{88}-\frac{304}{88}\)
\(=\frac{69}{8}\)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{1000}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{999}{1000}\)
\(=\frac{1}{1000}\)
chúc
bn
hk
tốt
\(C=\frac{8}{9}.\frac{15}{16}.\frac{24}{25}.........\frac{2499}{2500}\)
\(=\frac{2.4}{3^2}.\frac{3.5}{4^2}.\frac{4.6}{5^2}......\frac{49.51}{50^2}\)
\(=\frac{2.3.4....49}{3.4.5....50}.\frac{4.5.6....51}{3.4.5....50}\)
\(=\frac{1}{25}.17=\frac{17}{25}\)
\(a)\) \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{1000}\right)\)
\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{999}{1000}\)
\(A=\frac{1.2.3.....999}{2.3.4.....1000}\)
\(A=\frac{1}{1000}.\frac{2.3.4.....999}{2.3.4.....999}\)
\(A=\frac{1}{1000}\)
Vậy \(A=\frac{1}{1000}\)
a) \(\frac{\left(5.2\right)}{3.2}-\frac{1}{2}x+\frac{1}{3}+\frac{1}{5}=\frac{\left(3.2\right)}{5}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{1}{2}x+\frac{8}{15}=\frac{6}{5}\)
\(\Leftrightarrow\)\(\frac{1}{2}-\frac{2}{3}=\frac{1}{2}x\)
\(\Leftrightarrow\)\(-\frac{1}{6}=\frac{1}{2}x\)
\(\Leftrightarrow\)x=-1/3
b) VT= \(\frac{\left(3.5.4.2\right)}{5.2.3}=4\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right):6+4=4:\frac{2}{3}=6\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right):6=2\)
\(\Leftrightarrow x-\frac{1}{2}=12\)
=> x= 12,5
Bài 1:
1) \(\frac{11}{3}\): 3\(\frac{1}{3}\)- 3
= \(\frac{11}{3}\): \(\frac{10}{3}\)- 3
= \(\frac{11}{3}\). \(\frac{3}{10}\)- 3
= \(\frac{11}{10}\)- 3
= \(\frac{-19}{10}\)
2) \(\frac{5}{6}\): \(\frac{3}{52}\) - \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\) . \(\frac{52}{3}\)- \(\frac{5}{6}\). 47\(\frac{1}{3}\)
= \(\frac{5}{6}\).(\(\frac{52}{3}\)- 47\(\frac{1}{3}\))
= \(\frac{5}{6}\).( -30)
= -25
\(P=\frac{5}{2}+\frac{4}{11}+\frac{3}{22}+\frac{1}{30}+\frac{13}{60}=\left(\frac{4}{11}+\frac{3}{22}\right)+\left(\frac{5}{2}+\frac{1}{30}+\frac{13}{60}\right)=\frac{1}{2}+\frac{11}{4}=\frac{13}{4}\)
\(Q=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{19}{20}=\frac{1.2.3....19}{2.3.4....20}=\frac{1}{20}\)