\(\frac{x^5}{120}+\frac{x^4}{12}+\frac{7x^3}{24}+\frac{5x^2}{12}+\frac{x}{2}\in N\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Áp dụng BĐT AM-GM ta có: 

\(\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x\ge2\sqrt{9^x}=2\cdot3^x\)

\(\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge2\sqrt{25^x}=2\cdot5^x\)

\(\left(\frac{20}{3}\right)^x+\left(\frac{12}{5}\right)^x\ge2\sqrt{16^x}=2\cdot4^x\)

Cộng theo vế ta có: \(2VT\ge2VP\Leftrightarrow VT\ge VP\)

1 tháng 3 2017

kết bạn với mình nhé!$$$$$

a) Thay x=25 vào biểu thức \(A=\frac{7}{\sqrt{x}+8}\), ta được:

\(A=\frac{7}{\sqrt{25}+8}=\frac{7}{5+8}=\frac{7}{13}\)

Vậy: khi x=25 thì \(A=\frac{7}{13}\)

b) Ta có: \(B=\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{2\sqrt{x}-24}{x-9}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+3\right)+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+3\sqrt{x}+2\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+5\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{x+8\sqrt{x}-3\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+8\right)-3\left(\sqrt{x}+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\left(\sqrt{x}+8\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{\sqrt{x}+8}{\sqrt{x}+3}\)

c) Ta có: \(P=A\cdot B\)

\(=\frac{7}{\sqrt{x}+8}\cdot\frac{\sqrt{x}+8}{\sqrt{x}+3}=\frac{7}{\sqrt{x}+3}\)

ĐKXĐ: \(x\ge0\)

Để P có giá trị nguyên thì \(7⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3\inƯ\left(7\right)\)

\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-7;-1;7\right\}\)

\(\Leftrightarrow\sqrt{x}+3=7\)(vì \(\sqrt{x}+3\ge3\forall x\ge0\))

\(\Leftrightarrow\sqrt{x}=4\)

hay x=16(nhận)

Vậy: Khi x=16 thì P nguyên

d) Ta có: \(\sqrt{x}+3\ge3\forall x\ge0\)

\(\Leftrightarrow\frac{7}{\sqrt{x}+3}\le\frac{7}{3}\forall x\ge0\)

Dấu '=' xảy ra khi x=0

Vậy: Giá trị lớn nhất của biểu thức \(P=A\cdot B\)\(\frac{7}{3}\) khi x=0

e) Để \(P=\frac{1}{2}\) thì \(\frac{7}{\sqrt{x}+3}=\frac{1}{2}\)

\(\Leftrightarrow\sqrt{x}+3=7\cdot2=14\)

\(\Leftrightarrow\sqrt{x}=14-3=11\)

hay x=121(nhận)

Vậy: để \(P=\frac{1}{2}\) thì x=121

2 tháng 11 2018

Toán máy tính nha!: 

\(P\left(x\right)=\frac{1}{x^2+x}+\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+\frac{1}{x^2+9x+20}\left(\text{ }\text{Đề của bn thiếu vài chỗ}\right)\)

\(=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}\)

\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+4}-\frac{1}{x+5}\)

\(=\frac{1}{x}-\frac{1}{x+5}=\frac{x+5-x}{x\left(x+5\right)}=\frac{5}{x\left(x+5\right)}\)

đề ko rõ!! 

còn lại thì thay vào 

11 tháng 10 2019

\(-\frac{\left(7\sqrt{x}+7\right)}{5\sqrt{x}-1}\) nha :>>>

mik viết thiếu á

29 tháng 12 2017

áp dụng bđt svacxơ, ta có 

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)

nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)

,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)

từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)