\(\frac{a+b}{2}.\frac{a^2+b^2}{2}\le\frac{a^3+b^3}{2}\) (
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2017

\(\frac{a+b}{2}.\frac{a^2+b^2}{2}\le\frac{a^3+b^3}{2}\)

\(\Leftrightarrow\frac{\left(a+b\right)\left(a^2+b^2\right)}{4}\le\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{2}\)

\(\Leftrightarrow\frac{a^2+b^2}{4}\le\frac{a^2-ab+b^2}{2}\)

\(\Leftrightarrow\frac{a^2+b^2}{2}\le a^2-ab+b^2\)

\(\Leftrightarrow a^2+b^2\le2a^2-2ab+2b^2\)

\(\Leftrightarrow0\le a^2-2ab+b^2\)

\(\Rightarrow\left(a-b\right)^2\ge0\) (Luôn đúng với mọi a ; b)

7 tháng 3 2018

Tịnh tách các bài ra nhé.

29 tháng 9 2017

Ta thấy bđt đúng với n=1.

Giả sử bđt đúng với n=k. Ta cần c/m bđt đúng với n=k+1

Thật vậy ta có: \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\Leftrightarrow\left(\frac{a+b}{2}\right)^{k+1}\)\(\le\frac{a^{k+1}+b^{k+1}}{2}\)

                     \(\Leftrightarrow\left(\frac{a+b}{2}\right)^k.\frac{a+b}{2}\le\frac{a^{k+1}+b^{k+1}}{2}\left(1\right)\)

Ta có \(VT\left(1\right)=\left(\frac{a+b}{2}\right)^k.\frac{a+b}{2}\le\frac{a^k+b^k}{2}.\frac{a+b}{2}=\frac{a^{k+1}+a^kb+ab^k+b^{k+1}}{4}\)\(\le\frac{a^{k+1}+b^{k+1}}{2}\)

       \(\Leftrightarrow\frac{a^{k+1}+b^{k+1}}{2}-\frac{a^{k+1}+ab^k+a^kb+b^{k+1}}{4}\ge0\Leftrightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\left(2\right)\)

Ta chứng minh (2): * Giả sử \(a\ge b\)và giả thiết cho \(a\ge-b\)\(\Leftrightarrow a\ge\left|b\right|\Leftrightarrow a^k\ge\left|b\right|^k\ge b^k\Rightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\)

                            * Giả sử \(a< b\)và giả sử \(-a< b\)\(\Leftrightarrow\left|a\right|^k< b^k\Leftrightarrow a^k< b^k\Leftrightarrow\left(a^k-b^k\right)\left(a-b\right)\ge0\)

Vậy bđt (2) luôn đúng \(\Rightarrowđpcm\)

Đổi: \(\left(\frac{a+b}{2}\right)^n=\frac{\left(a+b\right)^n}{2^n}=\frac{a^n+b^n}{2^n}\)

Vì: \(a^n+b^n=a^n+b^n\)

\(2^n\ge2\)

=> \(\left(\frac{a+b}{2}\right)^n\le\frac{a^n+b^n}{2}\)

10 tháng 8 2016

Bài 1 :

a) Ta có : \(\left(1-a\right)\left(1-b\right)\left(1-c\right)=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Áp dụng bđt Cauchy : \(a+b\ge2\sqrt{ab}\) , \(b+c\ge2\sqrt{bc}\) , \(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) hay \(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge8abc\)

 

24 tháng 4 2020

Định đi ngủ mà chợt nhớ lúc chiều có hứa là làm giúp chủ tus nên h phải làm =)))

Violympic toán 8

23 tháng 4 2020

Ý em là câu b ý, câu a em chịu :v

27 tháng 1 2015

Ta có : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-3\left(\frac{a}{b}+\frac{b}{a}\right)+4=\left(\frac{a}{b}+\frac{b}{a}\right)^2-2-3\left(\frac{a}{b}+\frac{b}{a}\right)+4\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)^2-3\left(\frac{a}{b}+\frac{b}{a}\right)+2=\left(\frac{a}{b}+\frac{b}{a}-2\right)\left(\frac{a}{b}+\frac{b}{a}-1\right)\)

Ta có : \(\frac{a}{b}+\frac{b}{a}\ge2\), với mọi a, b \(\Rightarrow\)\(\frac{a}{b}+\frac{b}{a}-2\ge0\)\(\frac{a}{b}+\frac{b}{a}-1\ge1\)

Từ đó suy ra đpcm

 

Y
14 tháng 4 2019

a) \(a\le b\) \(\Rightarrow-a\ge-b\)

\(\Rightarrow-\frac{2}{3}a\ge-\frac{2}{3}b\) ( theo liên hệ giữa thứ tự và phép nhân )

\(\Rightarrow-\frac{2}{3}a+4\ge-\frac{2}{3}b+4\)

b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2-4ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)

Vì bđt cuối luôn đúng mà các biến đổi trên là tương đương nên bđt ban đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow a=b\)