K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2021

Đề thiếu VP nha b:)

26 tháng 5 2021

Bạn ơi 

Chứng minh gì vậy bạn

( mà xin lỗi vì mình mới lớp 6 )

15 tháng 10 2016

Câu trên đề sai

\(\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4-2\sqrt{3}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}=\sqrt{2}\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}\left(\sqrt{3}+1\right)}{\sqrt{6}+\sqrt{2}}=1\)

Vậy nó là số nguyên

15 tháng 10 2016

Lớn hơn hoặc bằng đấy

19 tháng 7 2016

Ta có:

\(a+b+c=4\)

\(\Rightarrow\)  \(a< 4\)

\(\Rightarrow\)  \(a^4< 4a^3\)  (do  \(a>0\)  nên  \(a^3>0\)  )

Do đó,  \(a^3>\frac{a^4}{4}\)  hay nói cách khác,  \(\sqrt[4]{a^3}>\sqrt[4]{\frac{a^4}{4}}=\frac{a}{\sqrt[4]{4}}\)  \(\left(1\right)\)

Từ đó, ta cũng tương tự thiết lập được:   \(\sqrt[4]{b^3}>\frac{b}{\sqrt[4]{4}}\)  \(\left(2\right)\)  và   \(\sqrt[4]{c^3}>\frac{c}{\sqrt[4]{4}}\)  \(\left(3\right)\)

Cộng từng vế các bđt   \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  ta có:

\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>\frac{a+b+c}{\sqrt[4]{4}}=\frac{4}{\sqrt[4]{4}}=2\sqrt{2}\)

14 tháng 7 2019

Có \(a+1+1\ge3\sqrt[3]{a}\)

     \(b+1+1\ge3\sqrt[3]{b}\)

\(\Rightarrow a+b+1+1+1+1\ge3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\)

\(\Rightarrow3\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\le6\)

\(\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}\le2\)

"=" tại a=b=1

4 tháng 6 2018

Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y;\sqrt[4]{c}=z\)

Cần chứng minh

\(\sqrt[4]{a}+\sqrt[4]{b}>\sqrt[4]{c}=\sqrt[4]{a+b}\)

\(\Rightarrow\left(x^3+y^3\right)^4>\left(x^4+y^4\right)^3\)

Rôi phân phối ra là thấy

4 tháng 6 2018

E ko hiểu

13 tháng 11 2018

\(\frac{a^2+b^2}{a-b}=\frac{\left(a-b\right)^2+2ab}{a-b}=a-b+\frac{2ab}{a-b}=a-b+\frac{12}{a-b}\ge2\sqrt{12}=4\sqrt{3}\left(Cauchy\right)\)

22 tháng 8 2016

a) (căn 3-1)^2 = (căn 3)^2 - 2.căn 3.1 + 1^2 (theo hẳng đẳng thức bình phương 1 hiệu)

                    = 3 - 2.căn 3 +1 = 4 - 2.căn 3

b) Theo câu a ta có 4-2.căn 3 = (căn 3-1)^2

=> căn của 4-2.căn 3 = căn 3-1 (khai phương ra ah)

=> căn của 4-2.căn 3 - căn 3 = căn 3 -1 - căn 3= -1

(sr bạn mk ko bt vt dấu căn nên hơi khó hỉu =.=)

19 tháng 11 2017

mình mới hc lớp 8 cho tớ sorry hjhj

15 tháng 6 2017

Đầu tiên bạn thế \(a=b=2\) thử xem sao đi nhé.

16 tháng 6 2017

lúc đầu mk bảo đề sai nhưng thầy kt lại vẫn đúng