
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
LQ
2

Các câu hỏi dưới đây có thể giống với câu hỏi trên

DD
Đoàn Đức Hà
Giáo viên
20 tháng 7 2021
Đề: Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh rằng: \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\).
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=t\).
\(\frac{a+c}{b+d}=\frac{bt+dt}{b+d}=\frac{t\left(b+d\right)}{b+d}=t\)
\(\frac{a-c}{b-d}=\frac{bt-dt}{b-d}=\frac{t\left(b-d\right)}{b-d}=t\)
Do đó \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\).

BA
5 tháng 5 2019
a, Áp dụng t/c dãy tỉ : a/b = b/c = c/d = (a + b + c)/(b + c + d). suy ra (a/b)^3 = (a+b+c/b+c+d)^3
Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (do rút gọn
TL
0

ab - ac - ab + bc = c(b - a)
Vậy Vt = Vp = c(b - a)
ab - ac - ab + bc = c(b - a)
Vậy Vt = Vp = c(b - a)