Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a+b+c=0\)
\(\Rightarrow\)\((a+b+c)^2=0\)
\(\Rightarrow\)\(a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow\)\(1+2(ab+bc+ac)=0\) ( Vì \(a^2+b^2+c^2=1\) )
\(\Rightarrow\)\(ab+bc+cd=\)\(-\dfrac{1}{2}\)
\(\Rightarrow\)\((ab+bc+cd)^2=\)\(\dfrac{1}{4}\)
\(\Rightarrow\)\(a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\)\(=\)\(\dfrac{1}{4}\)
\(\Rightarrow\)\(a^2b^2+a^2c^2+b^2c^2+2abc(a+b+c)\)\(=\dfrac{1}{4}\)
\(\Rightarrow\)\(a^2b^2 +a^2c^2+b^2c^2\)\(=\dfrac{1}{4}\) ( Vì \(a+b+c=0 \)) \((1)\)
Mặt khác: \(a^2+b^2+c^2=1\)
\(\Rightarrow\)\((a^2+b^2+c^2)^2=1\)
\(\Rightarrow\)\(a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=1\)
\(\Rightarrow\)\(a^4+b^4+c^4+2(a^2b^2+a^2c^2+b^2c^2)=1\)
\(\Rightarrow\)\(a^4+b^4+c^4+2.\)\(\dfrac{1}{4}=1\) (Theo \(1\))
\(\Rightarrow\)\(a^4+b^4+c^4 \)\(=1-\dfrac{1}{2}=\dfrac{1}{2}\)
\(\Rightarrow\) Đpcm.
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow1+2\left(ab+bc+ca\right)=0\Rightarrow ab+bc+ca=-\frac{1}{2}\Rightarrow\left(ab+bc+ca\right)^2=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=\frac{1}{4}\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=\frac{1}{4}\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=\frac{1}{4}\)
Xét: \(a^2+b^2+c^2=1\Rightarrow\left(a^2+b^2+c^2\right)^2=1\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=1\)
\(\Rightarrow a^4+b^4+c^4+2.\frac{1}{4}=1\Rightarrow a^4+b^4+c^4=\frac{1}{2}\)(đpcm)
a, 1001^2=1001.1001=1001.(1000+1)=1001.1000+1001=1001000+1001=...
b,999^2=999.999=999.(1000-1)=999.1000-999=999000-999=...
c, 22,9.30,1=22,9.(30+0,1)=22,9.30+22,9.0,1=22,9.10.3+2,29=229.3+2,29=687+2,29=689,29 (tui khong biet giau mu len phai viet vay thong cam nhung van dung day)
\(49^5-49=........49-49=......00⋮100\)
Vậy \(49^5-49⋮100\)
\(B=999^4+999=......1+999=....000⋮1000\)
Vậy: \(B⋮1000\)
Nhớ k cho mình nhé! Thank you!!!