Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)9.10n+18
=9.(10n+2)
=9.[1000....0000(n chữ số 0) +2]
=9.[1000....0002(n-1 chứ số 0)]
ta thấy + 9.[1000....0002(n-1 chứ số 0)] chia hết cho 9
+1000...0002(n-1 chữ số 0) chia hết cho 3 (vì tổng các chữ số của nó là 3 chia hết cho 3)
=>9.[1000....0002(n-1 chứ số 0)] chia hết cho 27 hay 9.10n+18 chia hết cho 27
Bài 1:
b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)
\(=4n^2-9-4n^2+36n\)
\(=36n-9⋮9\)
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
(1981 x 1982 - 990) : (1980 x 1982 + 992)
=(1980 x 1982+1982 -990) : (1980 x 1982 +992)
=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)
=1
92n + 14 chia hết cho 5
81 có chữ số tận cùng là 1
=> 14 + 1 = 15
=> 92n + 4 chia hết cho 5 (đpcm)
a) ta có: \(9^{2n}+14=\left(9^2\right)^n+14=81^n+14\)
mà 81^n có chữ số tận cùng là 1
14 có chữ số tận cùng là 4
=> 81^n + 14 có chữ số tận cùng là: 1+4 = 5
=> 81^n +14 chia hết cho 5
=> \(9^{2n}+14⋮5\left(đpcm\right)\)