\(1^5+2^5+3^5+...+n^5\) chia hết cho \(1+2+3+...+n\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???

Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

4 tháng 4 2021

\(B=1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

=> 2B = n ( n + 1 ) (I)

Ta có :

\(A=1^5+2^5+3^5+...+n^5\)

 \(\Leftrightarrow2A=\left(n^5+1\right)+\left[\left(n-1\right)^5+2^5\right]+\left[\left(n-2\right)^5+3^5\right]+...+\left(1+n^5\right)\)

Nhận thấy mỗi số hạng đều chia hết cho n + 1 nên 2A chia hết cho n + 1 (1)

Ta lại có : \(2A-2n^5=\left[\left(n-1\right)^5+1^5\right]+\left[\left(n-2\right)^5+2^5\right]+...\)chia hết cho n

=> 2A chia hết cho n (2)

Từ (1) và (2) => 2A chia hết cho n ( n + 1 ) (II)

=> Từ (I) và (II) => đpcm

27 tháng 9 2020

Ta có: 2S=n(n+1)

Áp dụng tính chất: \(a^n+b^n⋮a+b\)với a, b là các số nguyên dương và n lẻ, ta có:

\(2T=\left(1^5+n^5\right)+\text{[}2^5+\left(n-1\right)^5\text{]}+...+\left(n^5+1^5\right)⋮\left(n+1\right)\)

Tương tự \(2T⋮n\)

Mà \(\left(n.n+1\right)=1\Rightarrow2T⋮n\left(n+1\right)hayT⋮S\)

Tổng quát:

Có thể chứng minh được:

\(A\left(k.n\right)=1^k+2^k+...+n^k⋮T\left(n\right)=1+2+3+...+n\forall n,k\in N;n\ge1\)và k lẻ

17 tháng 9 2017

xét (2a+3b)(2b+3a)=\(4ab+6b^2+9ab+6a^2=6\left(a^2+b^2\right)+13ab\)

mặ khác ta có \(13ab⋮13\)\(a^2+b^2⋮13\left(gt\right)\Rightarrow6\left(a^2+b^2\right)⋮13\)\(\Rightarrow\left(2a+3b\right)\left(2b+3a\right)⋮13\)

\(\Rightarrow\)2a+3b hoặc 2b+3a chia hết cho 13

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

NV
23 tháng 10 2019

1/ \(a+1=\sqrt[4]{\frac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}-\sqrt[4]{\frac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}=\sqrt{\frac{\sqrt{3}+1}{\sqrt{3}-1}}-\sqrt{\frac{\sqrt{3}-1}{\sqrt{3}+1}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}}=\frac{\sqrt{3}+1-\sqrt{3}+1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}\)

2/ \(a+b=5\Leftrightarrow\left(a+b\right)^3=125\)

\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=125\)

\(\Rightarrow a^3+b^3=125-3ab\left(a+b\right)=125-3.1.5=110\)

3/ \(mn\left(mn+1\right)^2-\left(m+n\right)^2.mn\)

\(=mn\left(\left(mn+1\right)^2-\left(m+n\right)^2\right)\)

\(=mn\left(mn+1-m-n\right)\left(mn+1+m+n\right)\)

\(=mn\left(m-1\right)\left(n-1\right)\left(m+1\right)\left(n+1\right)\)

\(=\left(m-1\right)m\left(m+1\right)\left(n-1\right)n\left(n+1\right)\)

Do \(\left(m-1\right)m\left(m+1\right)\)\(\left(n-1\right)n\left(n+1\right)\) đều là tích của 3 số nguyên liên tiếp nên chúng đều chia hết cho 3 \(\Rightarrow\) tích của chúng chia hết cho 36

NV
23 tháng 10 2019

4/

Do \(0\le x\le1\Rightarrow\left\{{}\begin{matrix}x\ge0\\x-1\le0\end{matrix}\right.\) \(\Rightarrow x\left(x-1\right)\le0\)

\(\Leftrightarrow x^2-x\le0\Leftrightarrow x^2\le x\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

5/ Đặt \(\left\{{}\begin{matrix}\sqrt{5a+4}=x\\\sqrt{5b+4}=y\\\sqrt{5c+4}=z\end{matrix}\right.\)

Do \(a+b+c=1\Rightarrow0\le a;b;c\le1\)

\(\Rightarrow2\le x;y;z\le3\)\(x^2+y^2+z^2=5\left(a+b+c\right)+12=17\)

Khi đó ta có:

Do \(2\le x\le3\Rightarrow\left(x-2\right)\left(x-3\right)\le0\)

\(\Leftrightarrow x^2-5x+6\le0\Leftrightarrow x\ge\frac{x^2+6}{5}\)

Tương tự: \(y\ge\frac{y^2+6}{5}\) ; \(z\ge\frac{z^2+6}{5}\)

Cộng vế với vế:

\(A=x+y+z\ge\frac{x^2+y^2+z^2+18}{5}=\frac{17+18}{5}=7\)

\(\Rightarrow A_{min}=7\) khi \(\left(x;y;z\right)=\left(2;2;3\right)\) và các hoán vị hay \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị