Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta so sánh các số hạng
=> Dãy số từ lớn -> bé
=> \(\frac{1}{3}< \frac{1}{2}\)
Nên tất cả các số phía sau đều bé hơn \(\frac{1}{2}\)
1.3.77−1+3.7.99−3+7.9.1313−7+9.13.1515−9+\frac{19-13}{13.15.19}+13.15.1919−13
=\frac{1}{1.3}-\frac{1}{3.7}+\frac{1}{3.7}-\frac{1}{7.9}+\frac{1}{7.9}-\frac{1}{9.13}+\frac{1}{9.13}-\frac{1}{13.15}+\frac{1}{13.15}-\frac{1}{15.19}=1.31−3.71+3.71−7.91+7.91−9.131+9.131−13.151+13.151−15.191
=\frac{1}{1.3}-\frac{1}{15.19}=\frac{95}{285}-\frac{1}{285}=\frac{94}{285}=1.31−15.191=28595−2851=28594
b,=\frac{1}{6}.\left(\frac{6}{1.3.7}+\frac{6}{3.7.9}+\frac{6}{7.9.13}+\frac{6}{9.13.15}+\frac{6}{13.15.19}\right)b,=61.(1.3.76+3.7.96+7.9.136+9.13.156+13.15.196)
làm giống như trên
c,=\frac{1}{8}.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\right)c,=81.(1.2.31+2.3.41+3.4.51+...+48.49.501)
=\frac{1}{16}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)=161.(1.2.32+2.3.42+3.4.52+...+48.49.502)
=\frac{1}{16}.\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{50-48}{48.49.50}\right)=161.(1.2.33−1+2.3.44−2+3.4.55−3+...+48.49.5050−48)
=\frac{1}{16}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)=161.(1.21−2.31+2.31−3.41+3.41−4.51+...+48.491−49.501)
=\frac{1}{16}.\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{16}.\left(\frac{1225}{2450}-\frac{1}{2450}\right)=\frac{153}{4900}=161.(21−24501)=161.(24501225−24501)=4900153
d,=\frac{5}{7}.\left(\frac{7}{1.5.8}+\frac{7}{5.8.12}+\frac{7}{8.12.15}+...+\frac{7}{33.36.40}\right)d,=75.(1.5.87+5.8.127+8.12.157+...+33.36.407)
=\frac{5}{7}.\left(\frac{8-1}{1.5.8}+\frac{12-5}{5.8.12}+\frac{15-8}{8.12.15}+...+\frac{40-33}{33.36.40}\right)=75.(1.5.88−1+5.8.1212−5+8.12.1515−8+...+33.36.4040−33)
=\frac{5}{7}.\left(\frac{1}{1.5}-\frac{1}{5.8}+\frac{1}{5.8}-\frac{1}{8.12}+\frac{1}{8.12}-\frac{1}{12.15}+...+\frac{1}{33.36}-\frac{1}{36.40}\right)=75.(1.51−5.81+5.81−8.121+8.121−12.151+...+33.361−36.401)
=\frac{5}{7}.\left(\frac{1}{5}-\frac{1}{1440}\right)=\frac{5}{7}.\left(\frac{288}{1440}-\frac{1}{1440}\right)=\frac{41}{288}=75.(51−14401)=75.(1440288−14401)=28841
P/S: . là nhân nha
\(A=11+14+17+...+62+65\)
Số số hạng của \(A\)là
\(\left(65-11\right)\div3+1=19\)(số hạng)
Tổng của \(A\)là:
\(\left(11+65\right)\times19\div2=722\)
Đáp số: 722
\(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(B=\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+.....+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\times\frac{1}{2}\)
\(B=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{9}-\frac{1}{11}\right)\times\frac{1}{2}\)
\(B=\left(1-\frac{1}{11}\right)\times\frac{1}{2}\)
\(B=\frac{10}{11}\times\frac{1}{2}\)
\(B=\frac{5}{11}\)
\(C=\frac{3}{10}+\frac{3}{40}+\frac{3}{88}+\frac{3}{154}\)
\(C=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\)
\(C=\left(\frac{3}{2}-\frac{3}{5}+\frac{3}{5}-\frac{3}{8}+....+\frac{3}{11}-\frac{3}{14}\right)\div3\)
\(C=\left(\frac{3}{2}-\frac{3}{14}\right)\div3\)
\(C=\frac{9}{7}\div3\)
\(C=\frac{3}{7}\)
\(B=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(B=1-\frac{1}{11}\)
\(B=\frac{10}{11}\)
học tốt
S=1/5+1/13+1/14+1/15+1/61+1/62+1/63
= 1/5+(1/13+1/14+1/15)+(1/61+1/62+1/63)
Ta thấy 1/12>1/13 , 1/12>1/14 và 1/13>1/15
⇒ 1/13+1/14+1/15<1/12.3=1/4
Ta thấy 1/60>1/61, 1/60>1/62 và 1/60>1/63
⇒ 1/61+1/62+1/63 < 1/60.3=1/20
⇒ S<1/5+1/4+1/20
Mà 1/5+1/4+1/20=10/20=1/2
⇒ S<1/2 ( đpcm )