Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 1/2!+2/3!+....+2003/2004! (! là gì?: ví dụ 2!=1.2 ; 3!=1.2.3 ; 4!=1.2.3.4 )
=(2-1)/2!+(3-1)/3!+(4-1)/4!+........+(2004-1)/2004!
=2/2!-1/2!+3/3!-1/3!+4/4!-1/4!+.....+2004/2004!-1/2004!
=1-1/2!+1/2!-1/3!+1/3!-1/4!+....+1/2003!-1/2004!
=1/1/2004!<1
vậy biểu thức <1
Gọi số bác sĩ là k thì số kĩ sư là 45 - k ; tổng tuổi các bác sĩ là 39k ; tổng tuổi các kĩ sư là 33 x (45 - k) = 1485 - 33k
Tuổi trung bình của 45 người là :\(\frac{39k+1485-33k}{45}=35\)
=> 1485 + 6k = 1575 => 6k = 90 => k = 15.Vậy có 15 bác sĩ
Ta có:
\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\) - \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)
Đơn giản đi hết ta sẽ còn:
\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
2.
Ta có:
Số khoảng cách của các số trong dãy là 23 = 8
=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.
=> 3025 . 8 = 24200
=> 22.S = \(1-\frac{1}{2^2}+\frac{1}{2^4}-............+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}\)
=> 4S + S = \(1-\frac{1}{2^2}+\frac{1}{2^4}-......+\frac{1}{2^{2000}}-\frac{1}{2^{2002}}+\frac{1}{2^2}-\frac{1}{2^4}+\frac{1}{2^6}-....+\frac{1}{2^{2002}}-\frac{1}{2^{2004}}\)
=> 5S = \(1-\frac{1}{2^{2004}}
A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2004}\right)\)
A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)....\left(\frac{2004}{2004}-\frac{1}{2004}\right)\)
A = \(\frac{1}{2}\)x\(\frac{2}{3}.\)\(\frac{3}{4}....\)\(\frac{2003}{2004}\)
A = \(\frac{1}{2004}\)