Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu đa thức trên có nghiệm là n
<=>(n-4)2+(n+5)2=0
<=>(n-4)2=0 và (n+5)2=0
<=>n-4=0 và n+5=0
<=>n=4 và n=-5 (vô lý)
Vậy đa thức trên vô nghiệm
Ta có : \(P\left(x\right)=0< =>x^2+3x+5=0\)
Lại có : \(\Delta=3^2-4.5=9-20=-11\)
Vì delta < 0 nên đa thức trên vô nghiệm
p(x) = x^2 + 3x + 5
= x^2 + 2.3/2.x + 9/4 + 2.75
= (x + 3/2)^2 + 2.75
có (x + 3/2)^2 > 0
=> p(x) > 2.75
=> vô nghiệm
ta có : p(x) = 0
x^3 - x+ 5 = 0
x^3 - x =-5
mà x^3 khác -5
=> vô nghiệm
D(x) = x2- 4x +4 +1 = (x-2)2 +1 >0
vậy D(x) vô nghiệm
Dùng hằng thức (a-b)2=a2-2ab+b2 ta có
D(x)= X2-4x+5=x2-2x2+22+1
=(x-2)2+1
Vì (x-2)2>-1 suy ra (x-2)2+1>0
Vậy đa thức D(x)=x2-4x+5 không có nghiệm
gọi 3.x4+55.x-2 = M(x)
3.x4+55.x-2=> x.(3.x3+55)-2
TH1: x=0 TH2: x>0 TH3: x<0
=> M(x)= 0 => M(x)>0 => M(x)<0
vậy M(x) vô nghiệm
Ta có:
\(\left(x-4\right)^2\ge0\)
\(\left(x+5\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+\left(x+5\right)^2=0\) khi
\(\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\) => không có giá trị x nào thỏa mãn
=> đa thức vô nghiệm
x2+5x+4=(x2+x)+(4x+4)=(x+4)(x+1)=0
Đa thức đó luôn có 2 nghiệm phân biệt -4 và -1
mk có cách khác:
vì x2 lớn hơn hoặc bằng 0
5x lớn hơn hoặc bằng 0
=> x2 + 4 + 5x lớn hơn hoặc bằng 4 > 0
=> đa thức trên vô nghiệm
theo mk bn nên để số 4 ra ngoài vì nó là số tự do mà!!
Bài làm:
Ta có: \(x^2-x-6=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)-\frac{25}{4}=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{5}{2}\\x-\frac{1}{2}=-\frac{5}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
=> Mâu thuẫn với đề bài
=> điều giả sử sai
=> Phương trình có 2 nghiệm x=3 và x=-2
\(x^2-x-6=0\)
Vì \(\left(-1\right)^2-4.\left(-6\right)=1+24>0\)
Nên pt có 2 nghiệm phân biệt :
\(x_1=\frac{-1-5}{2}=-3;x_2=\frac{-1+5}{2}=2\)
=> ko thể CM pt vô nghiệm
\(-x^2+x-5\)
=\(-x^2+1.x-2^2+1\)
=\(x.\left(x-2\right)+2\left(x-2\right)+1\)
=\(\left(x-2\right)^2+1\ge1\ne0\)
Vậy đa thức trên vô nghiệm.