K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNP có \(\dfrac{MH}{MN}=\dfrac{MK}{MP}\)

nên HK//PN

Xét tứ giác NHKP có HK//NP

nên NHKP là hình thang

Hình thang NHKP có \(\widehat{HNP}=\widehat{KPN}\)(ΔMNP cân tại M)

nên NHKP là hình thang cân

Vì ∆MNP cân tại M

=> MN = MP , MNP = MPN 

=> MNP = \(\frac{180°-NMP}{2}\) 

Vì MQ = MK

=> ∆MQK cân tại M

=> MQ = MK , MKQ = MQK 

=> QKM = \(\frac{180°-QMK}{2}\) 

Mà QMK = NMP ( đối đỉnh) 

=> QKM = MNP 

Mà 2 góc này ở vị trí so le trong 

=> QK//NP 

=> QKPN là hình thang (1)

Ta có : 

QM + MP = QP 

KM + MN = KN 

Mà QM = MK , MN = MP 

=> OP = KN (2)

=> QKPN là hình thang cân 

10 tháng 7 2018

M N P A B I

Xét \(\Delta APN\) Và \(\Delta BNP\)Có :

  \(\widehat{ANP}=\widehat{BPN}\)

  \(\widehat{APN}=\widehat{BNP}\)

PN là cạnh chung

=> \(\Delta APN=\Delta BNP\left(g-c-g\right)\)

=> PA = NB ( cạnh chung )

=> tứ giác ABPN là hình thang ( 2 đường chéo =  nhau ) (dpcm) 

b) Ta có : \(\Delta MNP\) là tam giác cân

=> MH là đường phân giác cũng là đường trung trực 

Mà BA// PN ( hình thang ) 

    BP = AN => MB = MA 

 => MBA là tam giác cân ( đồng dạng với \(\Delta MNP\))

=> MI là trung trực chung của AB và PN ( dpcm)

23 tháng 9 2018

Diep tu anh ban can chung minh song song o cau a

10 tháng 9 2017

a) Ta có AD =  AE nên  ∆ADE cân

Do đó  ˆD1= ˆE1

Trong tam giác ADE có:  D1^ +  ˆE1 + ˆA^=1800

Hay 2ˆD1 = 1800 -  ˆA

ˆD1 = 180 độ −ˆA/2

Tương tự trong tam giác cân ABC ta có ˆB= 180−ˆA/2

Nên ˆD1 = ˆB ( hai góc đồng vị.)

Suy ra DE // BC

Do đó BDEC là hình thang.

Lại có ˆB = ˆC

Nên BDEC là hình thang cân.

b) Với ˆA=500

Ta được ˆB = ˆC = 180−ˆA/2= 180-50/2=65 độ

ˆD2=ˆE2=1800 - ˆB= 1800 - 650=1150

19 tháng 6 2020

A B C D E 1 1 2 2

a) Ta có : AD = AE => \(\Delta ADE\)cân 

\(\Rightarrow\widehat{D_1}=\widehat{E_1}\)

\(\Delta ADE\)có : \(\widehat{A}+\widehat{D_1}+\widehat{E_1}=180^o\)

Mà \(\widehat{D_1}=\widehat{E_1}\)nên \(\widehat{A}+2.\widehat{D_1}=180^o\)

\(\Rightarrow2.\widehat{D_1}=180^o-\widehat{A}\Rightarrow\widehat{D_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

Tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

Mà \(\widehat{B}=\widehat{C}\)( Vì tam giác ABC cân tại A )

\(\Rightarrow\widehat{A}+2.\widehat{B}=180^o\Rightarrow\widehat{B}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)

Từ (1)(2) => \(\widehat{D_1}=\widehat{B}\)

Mà hai góc ở vị trí đồng vị => DE // BC

=> Tứ giác DECB là hình thang.

Mà hai góc ở đáy B và C bằng nhau nên hình thang DECB là hình thang cân.

b) 

\(\widehat{A}=50^o\)thay vào (2) ta được :

\(\widehat{B}=\frac{180^o-50^o}{2}=65^o\)

Ta lại có : \(\widehat{B}=\widehat{C}\Rightarrow\widehat{C}=50^o\)

\(DE//BC\Rightarrow\widehat{D_1}+\widehat{B}=180^o\)

\(\Rightarrow\widehat{D_1}=180^o-\widehat{B}=115^o\)

DECB là hình thang cân 

\(\Rightarrow\widehat{E_2}=\widehat{D_2}\Rightarrow\widehat{E_2}=115^o\)

Vậy : \(\widehat{B}=\widehat{C}=65^o\)\(\widehat{D_2}=\widehat{E_2}=115^o\)

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc...
Đọc tiếp

Bài 1:Cho hình thang cân ABCD (Ab song song với CD)có AB=Ad và BD=DC.Tính các góc của hình thang này.

Bài 2:Cho tam giác ABC đều.Vẽ đường vuông góc với BC tại C cắt AB tại E.Vẽ đường vuông góc với AB tại A cắt BC tại F.Chứng minh rằng ACFE là hình thang cân.

Bài 3:Cho tam giác ABC cân tại A ,M là điểm bất kì nằm giữa A và B.Trên tia đối của CA lấy điểm N sao cho CN=BM.Vẽ ME và NF lần lượt vuông góc với đường thẳng BC.Gọi I là giao điểm của MN và BC.

a)Chứng minh : IE=IF

b)Trên cạnh AC lấy điểm D sao cho CD=CN.Chứng minh rằng BMDC là hình thang cân.

Bài 4:Cho tam giác ABC cân ở A ;M là trung điểm của BC.Trên tia AM lấy điểm N;BN cắt AC ở D,CN cắt AB ở E.Chứng minh BEDC là hình thang cân

Bài 5:Cho hình thang cân ABCD (AB song song với CD) ; góc D=60 độ,AD=AB

a)Chứng minh :DB là phân giác góc ADC

b)Chứng minh : DB vuông góc với BC

0

a: Xét ΔABC có 

\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)

Do đó: MN//BC

Xét tứ giác MNCB có MN//BC

nên MNCB là hình thang

mà \(\widehat{C}=\widehat{B}\)

nên MNCB là hình thang cân

a: Xét ΔPMN có 

\(\dfrac{PE}{EM}=\dfrac{PF}{FN}\)

Do đó: EF//MN

Xét tứ giác MEFN có EF//MN

nên MEFN là hình thang

mà \(\widehat{M}=\widehat{N}\)

nên MEFN là hình thang cân

16 tháng 9 2021

a) Ta xét: Tam giác ADE có: AD = AE

=> Tam giác ADE cân tại A

\(\Rightarrow\widehat{AED}=\widehat{ACB}\)

=> DE//BC

Ta xét: Tứ giác DECB có: DE//BC

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

=> BDEC là hình thang cân

b) \(\widehat{ABC}=\frac{1}{2}\left(180^o-50^o\right)=65^o\)

\(\widehat{ACB}=\widehat{ABC}=65^o\)

\(\widehat{DEC}=180^o-65^o=115^o\)

\(\widehat{EDB}=\widehat{EDC}=115^o\)

E C B D A

28 tháng 6 2017

Hình vẽ:

Hỏi đáp Toán

a)Xét \(\Delta ADE\) có:AD=AE(gt)

\(\Rightarrow\Delta ADE\) cân tại A

\(\Rightarrow\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\) (1)

Ta lại có:\(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{AED}=\widehat{ACB}\)

\(\Rightarrow\) DE song song với BC

Xét tứ giác DEBC có:

DE song song với BC

\(\widehat{ABC}=\widehat{ACB}\) ( 2 góc đáy của tam giác ABC cân tại A)

\(\Rightarrow\) BDEC là hình thang cân

\(\Rightarrow\widehat{BDE}=\widehat{CED}\)

b) Theo câu a có:\(\widehat{ACB}=\dfrac{180^o-\widehat{A}}{2}=\dfrac{180^o-50^o}{2}=60^0\)

\(\widehat{ABC}=\widehat{ACB}\) ( câu a) nên \(\widehat{ABC}=60^o\)

Vì DE song song với BC\(\Rightarrow\) góc DEC+ góc BCE=180o

=>góc DEC+60o =180o

=>góc DEC=120o\(\widehat{BDE}=\widehat{CED}\)

=>BDE=120o

6 tháng 9 2019

Ban sai doan tinh goc ACB