Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H E F G
a) Ta có: AB = AE + EB ; AC = AF+ FC
mà AB = AC (gt); EB = CF (gt)
=> AE = AF => t/giác AEF cân tại A
=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)
T/giác ABC cân tại A => \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\) mà 2 góc này ở vị trí đồng vị
=> EF // BC => tứ giác EFCB là hình thang có \(\widehat{B}=\widehat{C}\)
=> BEFC là hình thang cân
b) Ta có: \(\widehat{AFE\:}=\widehat{AEF}=\frac{180^0-\widehat{A}}{2}=\frac{180^0-40^0}{2}=70^0\)
\(\widehat{AFE\:}+\widehat{EFC\:}=180^0\) (kề bù) => \(\widehat{EFC\:}=180^0-\widehat{AFE\:}=180^0-70^0=110^0\)
c) Kẻ FG vuông góc với BC
Ta có: EF // BC (cmt)
EH \(\perp\)BC (gt)
=> HE \(\perp\)EF
Xét tứ giác EFGH có \(\widehat{HEF}=\widehat{EHG}=\widehat{HGF}=90^0\)
=> EFGH là HCN => EH = FG = 5 cm
St/giác BFC = 5.10/2 = 25 (cm2)
a) Vì AE = FA ( gt)
=> ∆AEF cân tại A
=> AEF = \(\frac{180°\:-\:BAC}{2}\)
Vì ∆ABC cân tại A
=> ABC = \(\frac{180°\:-\:BAC}{2}\)
=> ABC = AEF
Mà 2 góc này ở vị trí đồng vị
=> FE//BC
=> FEBC là hình thang
Mà ∆ABC cân tại A
=> ABC = ACB
=> FEBC là hình thang cân (dpcm)
b) Vì ∆ABC cân tại A
=> AB = AC
Mà AE = FA
=> EB = FC
Mà FEBC là hình thang cân
=> EC = FB ( tính chất)
Xét ∆ECB và ∆FBC ta có :
BC chung
EC = FB
ABC = ACB
=> ∆ECB = ∆FBC (c.g.c)
=> BEC = CFB ( tương ứng)
Xét ∆EIB và ∆FIC ta có :
EB = FC (cmt)
BEC = CFB (cmt)
EIB = FIC ( đối đỉnh)
=> ∆EIC = ∆FIC (g.c.g)
=> IB = IC ( tương ứng)
=> ∆IBC cân tại I
=> IBC = ICB
Vì M là trung điểm IB
N là trung điểm IC
=> MN là đường trung bình ∆IBC
=> MN //BC
=> MNCB là hình thang
Mà IBC = ICB (cmt)
=> MNCB là hình thang cân
a) Ta có AD = AE nên ∆ADE cân
Do đó ˆD1= ˆE1
Trong tam giác ADE có: D1^ + ˆE1 + ˆA^=1800
Hay 2ˆD1 = 1800 - ˆA
ˆD1 = 180 độ −ˆA/2
Tương tự trong tam giác cân ABC ta có ˆB= 180−ˆA/2
Nên ˆD1 = ˆB ( hai góc đồng vị.)
Suy ra DE // BC
Do đó BDEC là hình thang.
Lại có ˆB = ˆC
Nên BDEC là hình thang cân.
b) Với ˆA=500
Ta được ˆB = ˆC = 180−ˆA/2= 180-50/2=65 độ
ˆD2=ˆE2=1800 - ˆB= 1800 - 650=1150
A B C D E 1 1 2 2
a) Ta có : AD = AE => \(\Delta ADE\)cân
\(\Rightarrow\widehat{D_1}=\widehat{E_1}\)
\(\Delta ADE\)có : \(\widehat{A}+\widehat{D_1}+\widehat{E_1}=180^o\)
Mà \(\widehat{D_1}=\widehat{E_1}\)nên \(\widehat{A}+2.\widehat{D_1}=180^o\)
\(\Rightarrow2.\widehat{D_1}=180^o-\widehat{A}\Rightarrow\widehat{D_1}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
Mà \(\widehat{B}=\widehat{C}\)( Vì tam giác ABC cân tại A )
\(\Rightarrow\widehat{A}+2.\widehat{B}=180^o\Rightarrow\widehat{B}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1)(2) => \(\widehat{D_1}=\widehat{B}\)
Mà hai góc ở vị trí đồng vị => DE // BC
=> Tứ giác DECB là hình thang.
Mà hai góc ở đáy B và C bằng nhau nên hình thang DECB là hình thang cân.
b)
\(\widehat{A}=50^o\)thay vào (2) ta được :
\(\widehat{B}=\frac{180^o-50^o}{2}=65^o\)
Ta lại có : \(\widehat{B}=\widehat{C}\Rightarrow\widehat{C}=50^o\)
\(DE//BC\Rightarrow\widehat{D_1}+\widehat{B}=180^o\)
\(\Rightarrow\widehat{D_1}=180^o-\widehat{B}=115^o\)
DECB là hình thang cân
\(\Rightarrow\widehat{E_2}=\widehat{D_2}\Rightarrow\widehat{E_2}=115^o\)
Vậy : \(\widehat{B}=\widehat{C}=65^o\); \(\widehat{D_2}=\widehat{E_2}=115^o\)
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
tk
Giải thích các bước giải:
a, E là trung điểm của AB, F là trung điểm của AC ⇒ EF là đường trung bình của ΔABC
⇒ EF ║ BC ⇒ Tứ giác BEFC là hình thang
ΔABC cân tại A ⇒ ˆBB^ = ˆCC^
Hình thang BEFC có 2 góc kề 1 cạnh đáy bằng nhau
⇒ BEFC là hình thang cân (đpcm)
b, ΔABC cân tại A có AH là trung tuyến ⇒ AH cũng là đường cao hay AH ⊥ HC
Tứ giác AHCD có 2 đường chéo AC, HD cắt nhau tại F là trung điểm của mỗi đường
⇒ AHCD là hình bình hành mà AH ⊥ HC ⇒ AHCD là hình chữ nhật (đpcm)
c, AHCD là hình chữ nhật ⇒ AD ║ CH và AD = CH mà HB = HC ⇒ AD ║ HB và AD = HB
⇒ Tứ giác ABHD là hình bình hành ⇒ AH, BD giao nhau tại trung điểm của mỗi đường
Mặt khác ta có I là trung điểm của AH (Vì I ∈ EF là đường trung bình của ΔABC)
nên I cũng là trung điểm của BD hay B, I, D thẳng hàng (đpcm)
a) Ta xét: Tam giác ADE có: AD = AE
=> Tam giác ADE cân tại A
\(\Rightarrow\widehat{AED}=\widehat{ACB}\)
=> DE//BC
Ta xét: Tứ giác DECB có: DE//BC
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
=> BDEC là hình thang cân
b) \(\widehat{ABC}=\frac{1}{2}\left(180^o-50^o\right)=65^o\)
\(\widehat{ACB}=\widehat{ABC}=65^o\)
\(\widehat{DEC}=180^o-65^o=115^o\)
\(\widehat{EDB}=\widehat{EDC}=115^o\)
E C B D A