K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2023

Áp dụng tính chất sau \(\left(a-1\right)\left(a+1\right)=a^2-1\)(\(a\in Z\)) ta được:

\(\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n+2\right).\left[\left(n+1\right)\left(n+3\right)\right]=\left(n+2\right).\left[\left(n+2\right)^2-1\right]\)

Do \(n+2\) và \(\left(n+2\right)^2-1\) là hai số nguyên tố cùng nhau nên nếu \(\left(n+1\right)\left(n+2\right)\left(n+3\right)\) là số chính phương thì \(n+2\) và \(\left(n+2\right)^2-1\) cũng là các số chính phương

Do n là các số nguyên dương nên \(n+2\ge2\)

Với \(n+2\ge2\Rightarrow\left(n+2\right)^2-1\) không là số chính phương

\(\Rightarrow\left(n+1\right)\left(n+2\right)\left(n+3\right)\) không là số chính phương

28 tháng 6 2015

20^2x có tận cùng là 0

12^2x=144^x;2012^2x=4048144^x

xét x=2k+1 thì ta có: 144^(2k+1)=144^2k*144=20726^k*144 có tận cùng là 4

4048144^(2k+1)=(...6)^2*4048144 có tận cùng là 4 

suy ra số đã cho có tận cùng là 8 không phải là số chính phương (1)

xét x=2k thì ta có:144^2k=20736^k có tận cùng là 6

4948144^2k=(...6)^k có tận cùng là 6

suy ra số đã cho có tận cùng là 2 không phải là số chính phương (2)

từ(1) và (2) suy ra không tồn tại số x

4 tháng 1 2019

Đinh Tuấn việt chép mạng thề luôn!

nếu x = 2k thì 2015^2x = 4060225^x chứ không phải là 4048144^x nha

Nếu mún bt hãy xem dòng thứ 2 của lời giải của bạn ấy có ghi là

2012^2x = 4048144^x 

Nhưng đề bài lại nói là 2015^2x  cơ mà ??

18 tháng 3 2018

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

18 tháng 3 2018

bạn vào  https://h.vn/hoi-dap/quesion/129628.html

22 tháng 1 2015

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

21 tháng 6 2020

ùi hơi khó thế này thì có làm đc ko

9 tháng 12 2015

1)Đặt n + 1945 = a² (1) (a là số tự nhiên) 
Đặt n + 2004 = b² (2) (b là số tự nhiên) 
Do (n + 2004) > (n + 1945) 
=> b² > a² 
=> b > a (Do a và b là số tự nhiên) 
Từ (1) và (2) => b² - a² = (n + 2004) - (n + 1945) 
<=> (b + a)(b - a) = n + 2004 - n - 1945 
<=> (b + a)(b - a) = 59 
=> (b + a) và (b - a) là ước tự nhiên của 59 
Ta có ước tự nhiên của 59 là các số: 1;59 (59 là số nguyên tố) Kết hợp với (b + a) > (b - a) (do a và b là số tự nhiên) ta có: 
b + a = 59 (3) và b - a = 1 (4) 
cộng vế với vế của (3) và (4) ta được: 
(b + a) + (b - a) = 59 + 1 
<=> b + a + b - a = 60 
<=> 2b = 60 
<=> b = 30 
Thay b = 30 vào (2) ta được 
n + 2004 = 30² 
<=> n + 2004 = 900 
<=> n = 900 - 2004 
<=> n = -1104 
Vậy với n = -1104 thì n+ 1945 và n + 2004 đều chính phương

9 tháng 12 2015

n =900 -2004 = - nhé