Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
Trong 4 số tự nhiên liên tiếp luôn tồn tại 2 số chẵn (chia hết cho 2)
Đồng thời 2 số chẵn liên tiếp
=> Luôn tồn tại một số chia hết cho 4 và một số chia hết cho 2
Mặt khác , lại có tồn tại một số chia hết cho 3 trong 4 số liên tiếp đó
=> Tích của những số này luôn chia hết cho 24
Gọi tích đó là :
a . ( a + 1 ) . ( a + 2 ) . ( a + 3 )
= a . a . ( 1 + 2 + 3 )
= \(a^2\). 6
Còn lại bạn tự nghĩ nha =)))
Gọi 4 số tự nhiên liên tiếp là: 4k ; 4k + 1 ; 4k + 2 ; 4k + 3 ( k thuộc N )
Tích 4 số bằng 4k.(4k+1).(4k+2).(4k+3) chia hết cho 4 vì 4k chia hết cho 4
=> Tích 4 số tự nhiên liên tiếp chia hết cho 4.
Mk ko biết có đúng ko nữa
Vì 4 số tự nhiên liên tiếp có 1 số chia hết cho 4
Vậy tích 4 số tự nhiên liên tiếp chia hết cho 4
a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3)
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau
=> a chia hết cho (b.c)
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1
Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 = tích 4 số tự nhiên liên tiếp chia hết cho 8. (1)
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 (2)
Từ (1) và (2) => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => tích 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3)
Bài này áp dụng tính chất: Nếu a chia hết cho b; a chia hết cho c và b và c nguyên tố cùng nhau
=> a chia hết cho (b.c)
+ 2 số nguyên tố cùng nhau là 2 số có ƯCLN là 1
c) Gọi 2 số đó là n và n +1
n + (n+1) = 2n + 1 không chia hết cho 2
d) Tương tự : 3 số đó là n ; n+1 ; n +2
n + n + 1 + n + 2 = 3n + 3 chia hết cho 3
e) n + n + 1 + n + 2 + n + 3 = 4n+5 không chia hết cho 4
a )Gọi 3 số tự nhiên liên tiếp là : a , a + 1, a + 2
Tổng của 3 số tự nhiên liên tiếp là:
a +a+1+a+2
= ( a+ a+ a) +( 1 + 2)
= 3 x a + 3
Vì 3xa chia hết cho 3
và 3 chia hết cho 3
\(\Rightarrow\)3 x a + 3 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
Chỉ làm dc phần a) thui, sorry nha
k giùm mk nha
a/ Gọi ba số tự nhiên liên tiếp đó lần lượt là a ; a + 1 ; a + 2 (với a là số tự nhiên)ta có:
a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3
Vậy tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3.
b/ Gọi bốn số tự nhiên liên tiếp đó lần lượt là a ; a + 1 ; a + 2 ; a + 3 (với a là một số tự nhiên) ta có:
a + (a + 1) + (a + 2) + (a + 3) = 4a + 4 không chia hết cho 4
Vậy tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4.
(Đề của câu b) bạn ghi sai nha phải là CMR: Tổng của 4 số tự nhiên liên tiếp không chia hết cho 4)
gọi số chẵn thứ nhất là 2n
số chẵn thứ 2 là 2n+2
Tích của chúng là A(n) = 2n (2n + 2 ). Ta có 8 = 4.2
Do đó ta viết : A(n)= 4.n (n+1)
A(n) là tích của hai thừa số : một thừa số là 4, chia hết cho 4 và một thừa số n (n+1) chia hết cho 2. Vì vậy A(n) = 4.n (n+1) chia hết cho 4.2= 8 (đpcm)
4 số chẵn tự nhiên liên tiếp luôn luôn tồn tại :
1 số chẵn chia hết cho 2
1 số chẵn chia hết cho 4
1 số chẵn chia hết cho 6
Và 1 số chia hết cho 8
Vậy tích của chúng luôn luôn chia hết cho 2.4.6.8 = 384