\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}>2\) với a,...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2019

Ta có: \(\sqrt{\frac{a}{b+c}}=\sqrt{\frac{a^2}{a\left(b+c\right)}}\ge\frac{2a}{a+b+c}\)(1)

Tương tự: \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)(2)

                 \(\sqrt{\frac{c}{b+a}}\ge\frac{2c}{a+b+c}\)(3)

Cộng (1),(2),(3) vế theo vế => \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge2\)

24 tháng 5 2018

\(\sqrt{\frac{a}{c+b}}=\frac{a}{\sqrt{a\left(c+b\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)

tương tự : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)(ĐPCM)

9 tháng 6 2017

a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)

<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)

<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)

<=>\(a+b\ge2\sqrt{ab}\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)

Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)

28 tháng 9 2018

Ta có:\(a+\left(b+c\right)\ge2\sqrt{a\left(b+c\right)}\Rightarrow\frac{a+b+c}{2}\ge\sqrt{a\left(b+c\right)}\)

 \(\Rightarrow\sqrt{\frac{a}{b+c}}=\frac{a}{\sqrt{a\left(b+c\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)
Chứng minh tương tự rồi cộng vế với vế ta được:
\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)          
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}}\)-> hệ vô nghiệm
\(\)\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)

Ta có đpcm

Asp dụng bđt AM-GM ta có

\(\frac{\left(\frac{b+c}{a}+1\right)}{2}\ge\sqrt{\frac{b+c}{a}.1}\)

\(\Leftrightarrow\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\) hay  \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)(1)

Tương tự

\(\sqrt{\frac{b}{b+c}}\ge\frac{2b}{a+b+c}\)(2)

\(\sqrt{\frac{c}{c+a}}\ge\frac{2c}{a+b+c}\)(3)

Từ (1),(2),(3)  ta có

\(VT\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{\frac{a}{a+b}}=1\\\sqrt{\frac{b}{b+c}}=1\\\sqrt{\frac{c}{c+a}}=1\end{cases}}\)(vô lí ) 

Vậy dấu "=" không xảy ra 

do đó \(VT>2\)

18 tháng 8 2019

ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★      bạn viết sai rồi kia. xem đề coi có sai ko đã