\(a,b,c>0\) Chứng minh rằng:

\(\frac{a}{a+b}+\frac{b}{b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

\(\sqrt{\frac{a}{c+b}}=\frac{a}{\sqrt{a\left(c+b\right)}}\ge\frac{a}{\frac{a+b+c}{2}}=\frac{2a}{a+b+c}\)

tương tự : \(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)(ĐPCM)

Asp dụng bđt AM-GM ta có

\(\frac{\left(\frac{b+c}{a}+1\right)}{2}\ge\sqrt{\frac{b+c}{a}.1}\)

\(\Leftrightarrow\frac{a+b+c}{2a}\ge\sqrt{\frac{b+c}{a}}\) hay  \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)(1)

Tương tự

\(\sqrt{\frac{b}{b+c}}\ge\frac{2b}{a+b+c}\)(2)

\(\sqrt{\frac{c}{c+a}}\ge\frac{2c}{a+b+c}\)(3)

Từ (1),(2),(3)  ta có

\(VT\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{\frac{a}{a+b}}=1\\\sqrt{\frac{b}{b+c}}=1\\\sqrt{\frac{c}{c+a}}=1\end{cases}}\)(vô lí ) 

Vậy dấu "=" không xảy ra 

do đó \(VT>2\)

18 tháng 8 2019

ღ๖ۣۜLinh's ๖ۣۜLinh'sღ] ★we are one★      bạn viết sai rồi kia. xem đề coi có sai ko đã

30 tháng 4 2020

Áp dụng BĐT AM-GM ta có a+b+c\(\ge2\sqrt{a\left(b+c\right)}\Leftrightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Chứng minh tương tự ta có:\(\hept{\begin{cases}\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\\\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\end{cases}}\)

=> \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra <=>\(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Leftrightarrow a=b=c=0}\)(trái với giả thiết)

Vậy dấu "=" không xảy ra => đpcm

30 tháng 4 2020

Áp dụng BĐT Cô-si,ta có :

\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{b+c+a}{2a}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Tương tự : \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c};\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

Cộng từng vế theo vế, ta được :

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}\Rightarrow a+b+c=0}\)( trái với giả thiết vì a,b,c > 0 )

Nên dấu "=" không xảy ra

Vậy ...

29 tháng 8 2017

Áp dụng bđt Cauchy - Schwarz ta có :

\(\frac{a}{b}+\frac{b}{c}\ge2\sqrt{\frac{a}{b}.\frac{b}{c}}=2\sqrt{\frac{a}{c}}\)

\(\frac{b}{c}+\frac{c}{a}\ge2\sqrt{\frac{b}{c}.\frac{c}{a}}=2\sqrt{\frac{b}{a}}\)

\(\frac{a}{b}+\frac{c}{a}\ge2\sqrt{\frac{a}{b}.\frac{c}{a}}=2\sqrt{\frac{b}{c}}\)

\(\Rightarrow\left(\frac{a}{b}+\frac{b}{c}\right)+\left(\frac{b}{c}+\frac{c}{a}\right)+\left(\frac{a}{b}+\frac{c}{a}\right)\ge2\sqrt{\frac{b}{a}}+2\sqrt{\frac{c}{b}}+2\sqrt{\frac{a}{c}}\)

\(\Leftrightarrow2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge2\left(\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{c}}\right)\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{c}}\)

\(\Rightarrow\sqrt{\frac{b}{a}}+\sqrt{\frac{c}{b}}+\sqrt{\frac{a}{c}}\le1\)(đpcm)