\(a=\left(3^{105}+4^{105}\right)\)chia hết cho \(13\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

3^105+4^105=27^35+64^35 chia het cho 27+64=91

ma 91 chia het co 13 nên a chia het cho 13

sau tự lí luận nhà

15 tháng 8 2016

khó quá

15 tháng 8 2016

3^105 + 4^105 = 27^35 + 64^35 chia hết cho 27+64=91

Mà 91 chia hết cho 13 nên 3^105 + 4^105 chia hết cho 13
91 ko chia hết cho 11 nên 3^105+4^105 ko chia hết cho 11 

29 tháng 10 2017

??????

18 tháng 11 2017

a) \(2010^{100}+2010^{99}\)

\(=2010^{99}\left(2010+1\right)\)

\(=2010^{99}.2011⋮2011\left(dpcm\right)\)

b) \(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}.11⋮11\left(dpcm\right)\)

c) \(4^{13}+32^5-8^8\)

\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\left(2^2+2-1\right)\)

\(=2^{24}.5⋮5\left(dpcm\right)\)

10 tháng 3 2019

a)\(\left|x-y-2\right|^{2017}\ge0;\left(x+y-8\right)^{2018}\ge0\)

Nên VT \(\ge0\).Kết hợp đề bài suy ra \(VT=0\)

Dấu "=' xảy ra khi \(\hept{\begin{cases}x-y-2=0\\x+y-8=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=2\\x+y=8\end{cases}}\Leftrightarrow2x=10\Leftrightarrow x=5\)

Suy ra \(5-y=2\Leftrightarrow y=3\)

Vậy ....

b)Đặt \(\overline{abcd}⋮29\Leftrightarrow1000a+100b+10c+d⋮29\)

Do 1000; 100; 10; 1 không chia hết cho 29 nên \(a;b;c;d⋮29\)

Nên \(a;3b;9c;27d⋮29\Rightarrow a+3b+9c+27d⋮9^{\left(đpcm\right)}\)

23 tháng 6 2017

a) Vì \(45=BCNN\left(5,9\right);ƯCLN\left(5,9\right)=1\)

Ta có :

\(36^{36}-9^{10}⋮9\) \(\left(1\right)\)

Mặt khác :

\(36^{36}=\left(......6\right)\)

\(9^{10}=\left(9^2\right)^5=81^5=\left(.......1\right)\)

Từ \(\Rightarrow36^{36}-9^{10}=\left(.....6\right)-\left(...1\right)=\left(.....5\right)⋮5\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Rightarrow36^{36}-9^{10}⋮45\rightarrowđpcm\)

b) Ta có :

\(7^{1000}=\left(7^2\right)^{500}=49^{500}\)

\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)

Ta có lũy thừa tận cùng là 9 khi nâng lên lũy thừa bặc lũy thừa chẵn chữ số tận cùng sẽ là 1

\(\Rightarrow\left\{{}\begin{matrix}49^{500}=\left(....1\right)\\9^{500}=\left(....1\right)\end{matrix}\right.\)

\(\Rightarrow7^{1000}-3^{1000}=\left(.....1\right)-\left(...1\right)=\left(...0\right)⋮10\)

Vậy \(7^{1000}-3^{1000}⋮10\rightarrowđpcm\)

4 tháng 6 2017

Sửa đề: Tính tổng:

\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}...\)

Giải:

\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)

\(\Rightarrow-7A=-7\)\(\left[\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\right]\)

\(=\left(-7\right)^2+\left(-7\right)^3+...+\left(-7\right)^{2008}\)

\(\Rightarrow A-\left(-7\right)A=\left(-7\right)-\left(-7\right)^{2008}\)

\(\Rightarrow8A=-7+7^{2008}\Rightarrow A=\dfrac{-7+7^{2008}}{8}\)

Vậy \(A=\dfrac{-7+7^{2008}}{8}\)

_____________________________________

Ta có:

\(A=\left(-7\right)+\left(-7\right)^2+...+\left(-7\right)^{2007}\)

\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)

\(=\left(-7\right).\left[1+\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)

\(=\left(-7\right).43+...+\left(-7\right)^{2005}.43\)

\(=43.\left[\left(-7\right)+...+\left(-7\right)^{2005}\right]⋮43\) (Đpcm)

25 tháng 12 2016

đề sai con cuối