\(2010^{100}+2010^{99}\) chia hết cho 2011

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

a) \(2010^{100}+2010^{99}\)

\(=2010^{99}\left(2010+1\right)\)

\(=2010^{99}.2011⋮2011\left(dpcm\right)\)

b) \(3^{1994}+3^{1993}-3^{1992}\)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}.11⋮11\left(dpcm\right)\)

c) \(4^{13}+32^5-8^8\)

\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\left(2^2+2-1\right)\)

\(=2^{24}.5⋮5\left(dpcm\right)\)

25 tháng 8 2017

a)   \(2010^{100}\)+   \(2010^{99}\)

=   \(2010^{99}\)\(\left(2010+1\right)\)

=   \(2010^{99}\).   \(2011\)chia hết cho 2011

Vậy ...................................

b)   \(3^{1994}\)+   \(3^{1993}\)-   \(3^{1992}\)

=   \(3^{1992}\)\(\left(3^2+3-1\right)\)

=   \(3^{1992}\).   \(11\)

Vậy .......................

c)   \(4^{13}\)+   \(32^5\)-   \(8^8\)

=   \(\left(2^2\right)^{13}\)+   \(\left(2^5\right)^5\)-   \(\left(2^3\right)^8\)

=   \(2^{26}\)-   \(2^{25}\)-   \(2^{24}\)

=   \(2^{24}\).   \(\left(2^2+2-1\right)\)

=    \(2^{24}\). \(5\)

Vậy .......................

25 tháng 8 2017

3 cau 3 nhe

a)

\(=2010^{99}\left(2010+1\right)\)

\(=2010^{99}.2011\) 

cung thay chia het ro nhi

b)

\(=3^{1992}\left(3^2+3-1\right)\)

\(=3^{1992}.11\)

cung thay chia het ro nhi

c)

\(=\left(2^2\right)^{13}+\left(2^5\right)^5-\left(2^3\right)^8\)

\(=2^{26}+2^{25}-2^{24}\)

\(=2^{24}\left(2^2+2-1\right)\)

\(=2^{24}.5\)

cung thay chia het ro nhi

cho 3 nhe 

27 tháng 9 2019

1) 3^1994+4^1993-3^1992

  = 3^1992.(9+3-1)=3^1992.11 chia hết cho 11

=> 3^1994+3^1993-3^1992 chia hết cho 11

27 tháng 9 2019

Có ai bt bài 2 ko z 

13 tháng 8 2016

\(2010^{100}+2010^{99}=2010^{99}.\left(2010+1\right)=2010^{99}.2011\)chia hết cho 2011

24 tháng 9 2020

a, 2010100+201099=201099(2010+1)=201099.2011 =>2010100+201099 chia hết cho 11

  

29 tháng 10 2017

??????

2 tháng 7 2017

A = 75 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . 3 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . [ 4 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . [ ( 41994 + 41993 + ... + 43 + 42 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . ( 41994 - 1 ) + 25

A = 25 . ( 41994 - 1 + 1 )

A = 25 . 41994 

A = 25 . 4 . 41993

A = 100 . 41993 \(⋮\)100

2.

a) gọi 3 số nguyên liên tiếp là a , a + 1 , a + 2 

Theo bài ra : a + ( a + 1 ) + ( a + 2 ) = ( a + a + a ) + ( 1 + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)3

b) gọi 5 số nguyên liên tiếp là b, b + 1 , b + 2 , b + 3 , b + 4 

Theo bài ra : b + ( b + 1 ) + ( b + 2 ) + ( b + 3 ) + ( b + 4 ) 

= ( b + b + b + b + b ) + ( 1 + 2 + 3 + 4 )

= 5b + 10

= 5 . ( b + 2 ) \(⋮\)5

3.

Ta có : \(\frac{10^{94}+2}{3}=\frac{10...0+2}{3}=\frac{100...002}{3}\text{ }⋮\text{ }3\)là số nguyên

\(\frac{10^{94}+8}{9}=\frac{100...00+8}{9}=\frac{100...008}{9}\text{ }⋮\text{ }9\)là số nguyên

10 tháng 10 2019

Bài 2:

a) \(9^{1945}-2^{1930}\)

Ta có:

\(\left\{{}\begin{matrix}9^{1945}=\left(9^5\right)^{389}=\overline{.......9}\\2^{1930}=\left(2^{10}\right)^{193}=\overline{.......4}\end{matrix}\right.\)

\(\Rightarrow\overline{........9}-\overline{.........4}=\overline{..........5}.\)

\(\overline{.......5}⋮5\) nên \(\overline{.........9}-\overline{........4}=\overline{........5}\)

\(\Rightarrow9^{1945}-2^{1930}⋮5\left(đpcm\right).\)

Chúc bạn học tốt!

22 tháng 7 2018

\(a.\)

\(8^7-2^{18}\)

\(=\left(2^3\right)^7-2^{18}\)

\(=2^{21}-2^{18}\)

\(=2^{18}.2^3-2^{18}\)

\(=2^{18}\left(2^3-1\right)\)

\(=2^{18}.7\)

\(=2^{17}.7.2⋮14\)

Vậy \(8^7-2^{18}⋮14\)

\(b.\)

\(5^5-5^4+5^3\)

\(=5^3\left(5^2-5+1\right)\)

\(=5^3.21\)

\(=5^3.7.3⋮7\)

Vậy \(5^5-5^4+5^3⋮7\)

\(c.\)

\(7^6+7^5-7^4\)

\(=7^4\left(7^2+7-1\right)\)

\(=7^4.55\)

\(=7^4.5.11⋮11\)

Vậy \(7^6+7^5-7^4⋮11\)

22 tháng 7 2018

mk chỉ bt làm phần b với c thui xin lỗi bn nha