K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

phai them DK x khac 0; 90; 180; 270; 360;

\(\sin^{2008}\left(x\right)+\cos^{2008}\left(x\right)< \left(\sin^2\left(x\right)+\cos^2\left(x\right)\right)^{1004}\)

28 tháng 6 2021

`sqrta+1>sqrt{a+1}`

`<=>a+2sqrta+1>a+1`

`<=>2sqrta>0`

`<=>sqrta>0AAa>0`

`sqrt{a-1}<sqrta`

`<=>a-1<a`

`<=>-1<0` luôn đúng

`sqrt6-1>sqrt3-sqrt2`

`<=>sqrt6-sqrt3+sqrt2-1>0`

`<=>sqrt3(sqrt2-1)+sqrt2-1>0`

`<=>(sqrt2-1)(sqrt3+1)>0` luôn đúng

a) Ta có: \(\left(a-1\right)^2\ge0\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\forall a\)

\(\Leftrightarrow a^2+2a+1\ge4a\forall a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)(đpcm)

thank you very much

 

20 tháng 9 2020

Chứng minh cấm copy mạng nha.

20 tháng 9 2020

3-1=2 1+1=2

2-1=1 1+1=2

a: góc DHI+góc DCI=180 độ

=>DHIC nội tiếp

góc ECF=góc EHF=90 độ

=>ECHF nội tiếp

b: Xét ΔDHE vuông tại H và ΔDCF vuông tại C có

góc HDE chung

=>ΔDHE đồng dạng với ΔDCF

=>DH/DC=DE/DF

=>DH*DF=DC*DE

10 tháng 8 2017

TA CÓ :0,(1)=1/9;nhân 9 mỗi vẽ =>0,(9)=1 (đccm)

10 tháng 8 2017

Cách 2 là ;0,(9).10=9,99999

>>>>0,(9).9=9,99999..-0,999999..=9>>>0,(9)=1

16 tháng 12 2016

a) Có: \(\left(a-1\right)^2\ge0,\forall a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a\)

=>đpcm

b) Áp dụng bđt trên ta có:

\(\left(a+1\right)^2\ge4a\) (1)

\(\left(b+1\right)^2\ge4b\) (2)

\(\left(c+1\right)^2\ge4c\) (3)

Nhân vế vs vế (1) ; (2);(3) ta đc:

\(\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2\ge4a\cdot4b\cdot4c=64abc=64\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\)

16 tháng 12 2016

arigatou bạn nha

14 tháng 4 2017

a)

(a+1)2​​>=4a

<=> a2 +2a+1>=4a

<=>a2 -2a+1>=0

<=>(a-1)2>=0 với mọi a

Mà các phép biến đổi trên tương đương

=> đpcm

22 tháng 9 2019

Áp dụng BĐT ở câu a)

\(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge\sqrt{4a}\)

Mà a dương nên \(BĐT\Leftrightarrow a+1\ge2\sqrt{a}\)

Chứng minh tương tự: \(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)

2 tháng 8 2015

a) (a-1)^2 >= 0 <=> a^2 - 2a + 1 >= 0 <=> a^2 + 2a + 1 > 4a <=> (a+1)^2 >= 4a

b) Áp dụng bđt trên: \(\left(a+1\right)^2\ge4a\Leftrightarrow\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

\(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\) Do a > 0 nên a+1>0. Vậy |a+1| = a + 1

Khi đó: a+1 >= 2 căn a

Tương tự ta có b+1 >= 2 căn b và c+1 >= 2 căn c

=> (a+b)(b+a)(c+1) >= 8 căn abc = 8

 

7 tháng 12 2018

9. a) Xét hiệu : (a + 1)\(^2\) – 4a = a\(^2\) + 2a + 1 – 4a = a\(^2\)– 2a + 1 = (a – 1)\(^2\) ≥ 0.