Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số f(x) đâu có y,z (y là tên hàm số rồi còn gì)??
ĐK: \(x\inℤ\)
TA có: \(y=f\left(x\right)=ax^2+bx+c⋮5\)
Vậy \(f\left(x\right)=ax^2+bx+c\) có dạng \(5k\) (k nguyên)
Nếu \(x⋮5\Rightarrow x\)có dạng \(5t\)
Thay vào,ta có: \(f\left(x\right)=25at^2+5bt+c=5t\left(5at+b\right)+c=5k\) (1)
Suy ra \(c=5k-5t\left(5at+b\right)=5\left[k-t\left(5at+b\right)\right]\) (2)
Thay (2) và (1) suy ra nếu x chia hết cho 5 thì f(x) chia hết cho 5 (thỏa mãn)
Nếu \(x⋮̸5\Rightarrow x\) có dạng 5t + 1
Thay vào và chứng minh tương tự để suy ra nếu x không chia hết cho 5 thì f(x) không chia hết cho 5 (trái với giả thiết)
Từ đó suy ra đpcm
Đặt biểu thức là A. Ta có:
Tổng các số hạng của A là: 100-1+1=100 (số hạng)
Nhóm 4 số hạng liên tiếp với nhau được 25 nhóm như sau:
A = (3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)
A = 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34) = (3+32+33+34)(3x+3x+4+...+3x+96)
=> A = 120.(3x+3x+4+...+3x+96)
=> A chia hết cho 120 với mọi x thuộc N
Đặt A là biểu thức cần xét.
Tổng các số hạng của A là: 100-1+1=100 (số hạng)
Nhóm 4 số hạng liên tiếm với nhau được 25 nhóm như sau:
A=(3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)
A= 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34)
=> A=(3+32+33+34)(3x+3x+4+...+3x+96) = 120.(3x+3x+4+...+3x+96)
=> A chia hết cho 120 với mọi x