\(\left(n^2+3n+1\right)^2-1\) chia hết cho 24

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

\(\left(n^2+3n+1\right)^2-1\)

\(=\left[\left(n^2+3n\right)+1\right]^2-1\)

\(=\left(n^2+3n\right)^2+2\cdot\left(n^2+3n\right)\cdot1+1^2-1\)

\(=n^4+6n^3+9n^2+2n^2+6n\)

\(=n^4+6n^3+11n^2+6n\)

Bạn tham khảo tiếp :

Chứng minh n^4 + 6n^3 + 11n^2 + 6n chia hết 24,(m + 1)(m + 3)(m + 5)(m + 7) + 15 chia hết m + 6,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

13 tháng 9 2018

Cái này hiểu nhưng hơi dài, đi copy sorry mn

dat A(n) = n^4+6n^3+11n^2+6n va A chia het cho 24 (1) 
+) voi n = 1 => A = 24 chia het cho 24. vay (1) dung voi n = 1.(*) 
+) gia su (1) dung voi n = k tuc la A(k) = k^4+6k^3+11k^2+6k chia het cho 24 (**). 
+) gio ta phai chung minh (1) cung dung voi n = (k+1). that vay ta co: 
A(k+1) = (k+1)^4+6(k+1)^3+11(k+1)^2+6(k+1) = (k+1)[(k+1)^3+6(k+1)^2+11(k+1)+6] = 
= (k+1)(k+2)[(k+1)^2+5(k+1)+6] = (k+1)(k+2)(k+3)(k+4) 
nhan thay A(k+1) la h cua so tu nhien lien tiep=> A(k+1) chia het cho 24 (***) 
tu (*) (**) va (***) => A(n) = n^4+6n^3+11n^2+6n chia het cho 24 voi moi n thuoc N(*).

23 tháng 2 2018

(n2+3n+1)2 -1

⇔(n2+3n+1-1)(n2+3n+1+1)

⇔(n2+3n)(n2+3n+2)

⇔n4+3n3+2n2+3n2+9n2+6n

⇔n4+6n3+11n2+6n

⇔n(n3+6n2+11n+6)

⇔n(n+1)(n+3)(n+2)⋮24

vì tích 4 số nguyên liên tiếp chia hết cho 24

23 tháng 2 2018

hattori heiji cậu cũng phải cần chứng minh tích 4 số nguyên liên tiếp chia hết cho 24 chứ!!!

7 tháng 8 2017

Ta có:\(n^4+3n^3-n^2-3n=n^3.\left(n+3\right)-n.\left(n+3\right)=\left(n+3\right).\left(n^3-n\right)=\left(n+3\right).n.\left(n^2-1\right)=n.\left(n-1\right).\left(n+1\right).\left(n+3\right)⋮6\)b)Ta có:\(\left(2n-1\right)^3-2n+1=\left(2n-1\right).\left(\left(2n-1\right)^2-1\right)=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)=2n.\left(2n-1\right).\left(2n-2\right)⋮24\)

16 tháng 11 2017

a)

n3+3n2+2n

= n3+ n2+2n2+2n

= n2(n+1) +2n(n+1)

= ( n+1)n(n+2)

Có n(n+1)(n+2) chia hết cho 6 vì là tích của 3 số nguyên liên tiếp

b)

(n2+n-1)2-1

= (n2+n-1-1)(n2+n-1+1)

= (n2+n-2)(n2+n)

= [ (n2-n) + (2n-2)] n (n+1)

= [ n(n-1) + 2(n-1)] n (n+1)

= n(n-1)(n+1)(n+2)

Có n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 6

mà n(n-1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 và(n+1)(n+2) là tích 2 số nguyên liên tiếp nên chia hết cho 2

nên n(n-1)(n+1)(n+2) chia hết cho 4

\(\Rightarrow\) n(n-1)(n+1)(n+2) chia hết cho 24

16 tháng 11 2017

a) n3+3n2+2n

=n(n2+3n+2)

=n(n2+2n+n+2)

=n[(n2+2n)+(n+2)]

=n[n(n+2)+(n+2)]

=n(n+2)(n+1) ⋮6 (3 số nguyên liên tiến nhân với nhau ⋮6) (đpcm)

5 tháng 7 2016

xem lại câu a nhé bạn

23 tháng 1 2018

là 10 nhé

16 tháng 8 2015

Ta có \(n^3+3n^2+2n=n(n^2+3n+2)=n(n+1)(n+2)\)  là tích ba số nguyên liên tiếp. Trong hai số liên tiếp luôn có một chia hết cho 2, trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 6.

Ta có \((n^2+n-1)^2-1=(n^2+n-2)(n^2+n)=(n-1)(n+2)n(n+1)=(n-1)n(n+1)(n+2)\)  là tích bốn số nguyên liên tiếp.

Trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 3. Mặt khác trong bốn số liên tiếp phải có hai số chẵn liên tiếp. Hai số chẵn liên tiếp phải có một số chia hết cho 4. Vậy tích sẽ chia hết cho 8. Từ hai điều đó suy ra tích chia hết 3x8=24.

 

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

24 tháng 7 2019

undefined

21 tháng 10 2017

b) n3 + 6n2 + 8n

= n( n2 + 6n + 8)

= n( n2 + 2n + 4n + 8)

= n[ n( n +2) + 4( n +2)]

= n( n +2)( n + 4)

Do n chẵn nên ta đặt : 2k = n

Ta có : 2k( 2k +2)( 2k +4)

= 2k.2( k +1)2( k +2)

= 8k( k + 1)( k +2)

Do : k;( k +1);( k +2) là 3 STN liên tếp sẽ chia hết cho 2,3

Suy ra : k( k + 1)( k +2) chia hết cho 6

Suy ra : 8k( k + 1)( k +2) chia hết cho 48


16 tháng 3 2019

a) 24= 2.3.4

(n^2+n-1)^2-1 = (n^2-1+1+n).(n^2+n+1+1)

=(n^2+n).(n^2+n+2)=n.(n-1).(n-1).(n-2)

Tích của 4 số nguyên liên tiếp luôn chia hết cho 2,3,4

Mà U(2,3,4)=1 =>(n^2+n-1)^2 chia hết cho 2.3.4