K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

Ta có:

\(\frac{1}{51}>\frac{1}{75}\)

\(\frac{1}{52}>\frac{1}{75}\)

......................

\(\frac{1}{75}=\frac{1}{75}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25.\frac{1}{75}=\frac{1}{3}\)(1)

Ta có:

\(\frac{1}{76}>\frac{1}{100}\)

\(\frac{1}{77}>\frac{1}{100}\)

........................

\(\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=25.\frac{1}{100}=\frac{1}{4}\)(2)

Từ (1) và (2) ta có:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{7}{12}\)(5)

Ta có:

\(\frac{1}{51}=\frac{1}{51}\)

\(\frac{1}{52}< \frac{1}{51}\)

...................

\(\frac{1}{75}< \frac{1}{51}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=25.\frac{1}{51}< 25.\frac{1}{50}=\frac{1}{2}\)(3)

Ta có:

\(\frac{1}{76}=\frac{1}{76}\)

\(\frac{1}{77}< \frac{1}{76}\)

...................

\(\frac{1}{100}< \frac{1}{76}\)

\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{76}+\frac{1}{76}+...+\frac{1}{76}=25.\frac{1}{76}< 25.\frac{1}{75}=\frac{1}{3}\)(4)

Từ (3) và (4) ta có:

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{5}{6}\)(6)

Từ (5) và (6) 

\(\Rightarrow\frac{7}{12}< \frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}< \frac{5}{6}\)

                                                            đpcm

Tham khảo nhé~

20 tháng 3 2016

Số chia rút gọn thành 1/51+1/52+...+1/99+1/100

=> biểu thức bằng 1

24 tháng 4 2016

Ta có vế trái:

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

                                                           \(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

                                                           \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

                                                           \(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

                                                           \(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}=\)vế phải

Vậy\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\RightarrowĐpcm\)

5 tháng 4 2018

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}< 1\) ( điều phải chứng minh ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

27 tháng 2 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\left(\text{đ}pcm\right)\)

vậy:\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}< 1\)

k mk bạn nha:)

23 tháng 9 2015

\(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{3}-\frac{1}{100}\)

\(\frac{97}{300}\)

19 tháng 2 2017

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)

19 tháng 2 2017

k=2

chuan 100%ok

28 tháng 6 2017

CÂU 1 = -59/111

 CÂU 2 = 11/63

     

28 tháng 6 2017

cảm ơn kết quả thì mik b òi nhưng mik cần cách làm

27 tháng 6 2015

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

4 tháng 4 2017

A=1/100

4 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

29 tháng 6 2017

dễ mak bn!!!

29 tháng 6 2017

dễ thì làm hộ ik