Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây là định lý nhỏ phecmat nhé bạn.
Định lý nhỏ Fermat
+)Gọi d là ƯCLN(n,22n+1)
\(\Rightarrow n⋮d;22n+1⋮d\)
\(n⋮d\)
\(\Rightarrow22n⋮d\)(1)
\(22n+1⋮d\)(2)
+)Từ (1) và (2)
\(\Rightarrow22n+1-22n⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=1\)
=>d=1
\(\RightarrowƯCLN\left(n,22n+1\right)=1\)
=>n và 22n+1 nguyên tố cùng nhau với mọi n nguyên dương
Chúc bn học tốt
a) phân tích nhân tử có cái trong ngoặc bằng (\(m^2-1\))\(\left(m+3\right)\)=(m-1)(m+1)(m+3)
có 3 số trên là 3 số chẵn liên tiếp suy ra tích trên chia hết cho 8 mà tích 3 số chẵn liên tiếp luôn chia hết cho6 nên tích trên chia hết cho 48
b)có \(5^{2n}\)đồng dư với 25 (mod của 19) mà 25 đồng dư với 6(mod của 19) suy ra \(5^{2n}\)đồng dư với \(6^n\)(mod của 19) nên cái trong ngoặc đồng dư với \(6^n\left(7+12\right)\)=\(6^n\).19 đồng dư với 0 ( mod của 19) suy ra đpcm
Ta có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=4\left(a^2+b^2+c^2-ab-bc-ac\right)\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=4a^2+4b^2+4c^2-4ab-4bc-4ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=4a^2+4b^2+4c^2-4ab-4bc-4ac\)
\(\Leftrightarrow0=2a^2+2b^2+2c^2-2ab-2bc-2ac\)
\(\Leftrightarrow0=a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\)
\(\Leftrightarrow0=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
Mà \(\left\{\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
\(\Rightarrow a=b=c\) ( đpcm )
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
\(\text{Ta có: }a^p-a=a.a^{p-1}-a=a\left(a^{p-1}-1\right)\)
\(\text{Vì }a\left(a^{p-1}-1\right)⋮a\)
\(\text{Vậy nên }a^p-a⋮a\)