Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4-4y^8+8y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4x^4y^4+4y^8}{\left(x^4+y^4\right)\left(x^4-y^4\right)}=4\)
\(\Leftrightarrow\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4-y^4}=4\)
.............................................................................
\(\Leftrightarrow\frac{y}{x-y}=4\)
\(\Leftrightarrow5y=4x\)
b/ Ta có:
\(a-b=a^3+b^3>0\)
Ta lại có:
\(a^2+b^2< a^2+b^2+ab\)
Ta chứng minh
\(a^2+b^2+ab< 1\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)< a-b=a^3+b^3\)
\(\Leftrightarrow a^3-b^3< a^3+b^3\)
\(\Leftrightarrow b^3>0\) (đúng)
Vậy ta có điều phải chứng minh
1.
Áp dụng bất đẳng thức Cô-si thôi:
\(\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}\ge\frac{2\sqrt{ab}}{ab}=\frac{2}{\sqrt{ab}}\ge\frac{2}{\frac{a+b}{2}}=\frac{4}{a+b}\)
Dấu "=" khi a = b
2.
Vì a,b,c là ba cạnh tam giác nên dễ thấy các mẫu số dương.
Áp dụng câu 1 ta có:
\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)
Tương tự:
\(\frac{1}{c+a-b}+\frac{1}{b+c-a}\ge\frac{4}{2c}=\frac{2}{c}\)
\(\frac{1}{b+c-a}+\frac{1}{a+b-c}\ge\frac{4}{2b}=\frac{2}{b}\)
Cộng theo vế ta được:
\(2\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\) (đpcm)
Dấu "=" xảy ra khi a = b = c hay tam giác đó đều.
1a)\(a^2+b^2+1\ge ab+a+b\)
\(\Leftrightarrow2\left(a^2+b^2+1\right)\ge2\left(ab+b+a\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi x=y=1
b)\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)(luôn đúng)
Dấu "=" xảy ra khi a=b=c=0
a) Đặt \(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(2A=\left(3^4-1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(...\)
\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(2A=3^{64}-1\)
\(A=\frac{3^{64}-1}{2}\)
câu 2
a^4 + b^4 + c^4 + d^4 = 4abcd
<=> \(a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2a^2b^2-4abcd+2b^2d^2=0\)
<=> \(\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)
<=> \(\left\{{}\begin{matrix}a^2=b^2\\c^2=d^2\\ab=cd\end{matrix}\right.\Leftrightarrow a=b=c=d\)
Ta có : \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{b}{d}=\frac{a}{c}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
đpcm
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)
\(\Rightarrow\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
đpcm
cái này tương tự nà chỉ khác tử -> mẫu Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Ta có : a + b + c = abc
\(\frac{\Rightarrow\left(a+b+c\right)}{abc}=\frac{abc}{abc}\)
\(\Rightarrow\frac{1}{ac}+\frac{1}{bc}+\frac{1}{ab}=1\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)
\(\text{Ta có: }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{a+b+c}{abc}=\frac{abc}{abc}=1\left(\text{vì }a+b+c=abc\right)\)
\(\text{Lại có: }\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Rightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=4\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2.1=2\left(\text{ vì }\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1\right)\)
Vậy ...
\(a+b+c+d=1\Rightarrow\frac{a}{2}+\frac{b}{2}+\frac{c}{2}+\frac{d}{2}=\frac{1}{2}\)
Ta có:
\(a^2+b^2+c^2+d^2-\frac{1}{2}=a^2+b^2+c^2+d^2-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}-\frac{d}{2}\)
\(=a^2-\frac{a}{2}+\frac{1}{16}+b^2-\frac{b}{2}+\frac{1}{16}+c^2-\frac{c}{2}+\frac{1}{16}+d^2-\frac{d}{2}+\frac{1}{16}-\frac{1}{4}\)
\(=\left(a-\frac{1}{4}\right)^2+\left(b-\frac{1}{4}\right)^2+\left(c-\frac{1}{4}\right)^2+\left(d-\frac{1}{4}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(\Rightarrow a^2+b^2+c^2+d^2-\frac{1}{2}\ge-\frac{1}{4}\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=d=\frac{1}{4}\)