Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(2^{121}\) chẵn nên k chia hết cho 3 và 7
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)+2^{121}\\ A=\left(2+1\right)\left(2+2^3+...+2^{119}\right)+2^{121}\\ A=3\left(2+2^3+...+2^{119}\right)+2^{121}⋮̸3\left(2^{121}⋮̸3\right)\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)+2^{121}\\ A=\left(1+2+2^2\right)\left(2+...+2^{118}\right)+2^{121}\\ A=7\left(2+...+2^{118}\right)+2^{121}⋮̸7\left(2^{121}⋮̸7\right)\)
Ta có :
A = 2 + 22 + ... + 22010
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
A = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )
A = 2 . 3 + 23 . 3 + ... + 22009 . 3
A = 3 . ( 2 + 23 + ... + 22009 ) \(⋮\)3
A = 2 + 22 + ... + 22010
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
A = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 22008 . ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 22008 . 7
A = 7 . ( 2+ 24 + ... + 22008 ) \(⋮\)7
B = 3 + 32 + ... + 32010
B = ( 3 + 32 ) + ... + ( 32009 + 32010 )
Làm tương tự chứng minh được B \(⋮\)4
B = 3 + 32 + ... + 32010
B = ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )
Làm tương tự chứng minh được B \(⋮\)13
a, \(A=2+2^2+...+2^{2010}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(\Leftrightarrow A=2.3+2^3.3+...+2^{99}.3\)
\(\Leftrightarrow A=3\left(2+2^2+...+2^{99}\right)\)chia hết cho 3
\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)
\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)
\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)
A = n3 + n2 + 3
n ⋮ 3⇒ n2 ⋮ 3
⇒ n2 ⋮ 32 (Tính chất của một số chính phương)
⇒ n2 ⋮ 9
⇒ n2.n ⋮ 9
⇒n2.n + n2 ⋮ 9; mà 3 không chia hết cho 9
⇒ n2.n + n2 + 3 không chia hết cho 9
1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10 chia hết cho 125 = 102510 chia hết cho 125
Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b
1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9
2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24
Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc
P=1+2+\(2^2\)+\(2^3\)+\(2^4\)+\(2^5\)+\(2^6\)+\(2^7\)
P=(1+2)+(\(2^2\)+\(2^3\))+(\(2^4\)+\(2^5\))+(\(2^6\)+\(2^7\))
P=1.(1+2)+\(2^2\)(1+2)+\(2^4\)(1+2)+\(2^6\)(1+2)
P=(1+\(2^2\)+\(2^4\)+\(2^6\)).3
⇒P⋮3(đpcm)
ta có :
A chia hết cho 15 nên A chia hết cho 3 và A chia hết cho 5
\(A=2+2^2+2^3+2^4+...+2^7+2^8+2^9+2^{10}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(A=1.\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^8.\left(2+2^2\right)\)
\(A=1.6+2^2.6+...+2^8.6\)
\(A=6\left(1+2^2+...+2^8\right)\)
Mà \(6⋮3\Rightarrow6.\left(1+2^2+...+2^8\right)\)
\(\Rightarrow A⋮3\)
NHỚ **** nhé!!!
A = ( 2 + 2^2 ) + ( 2 ^ 3 + 2 ^ 4 ) + ( 2 ^ 5 + 2 ^ 6 ) + .......+ ( 2 ^ 9 + 2 ^ 10 )
= ( 2 .1 + 2 .2 ) + ( 2 ^ 3 . 1 + 2 ^ 3 . 2 ) + ........+ ( 2 ^ 9 . 1 + 2 ^ 9 . 2 )
= 2 . ( 1 + 2 ) + 2 ^ 3 . ( 1 + 2 ) + .........+ 2 ^ 9 . ( 1 + 2 )
= 2 . 3 + 2 ^ 3 . 3 + ....... + 2 ^ 9 . 3
= 3 . ( 2 + 2 ^ 3 + ..... + 2 ^ 9 ) chia hết cho 3
\(\Rightarrow\) A chia hêt cho 3
nãy mình làm rồi mà?