K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

a) gọi \(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

gọi \(B=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

\(B< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1+1-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

\(\Rightarrow A=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< \frac{1}{2^2}.2=\frac{1}{2}\)

b) Ta thấy \(\frac{1}{37}< \frac{1}{35}< \frac{1}{31}< \frac{1}{30}\)\(\frac{1}{61}< \frac{1}{53}< \frac{1}{47}< \frac{1}{45}\)

Do đó : \(\frac{1}{3}+\frac{1}{31}+\frac{1}{35}+\frac{1}{37}+\frac{1}{53}+\frac{1}{61}< \frac{1}{3}+\frac{1}{30}.3+\frac{1}{45}.3=\frac{1}{2}\)

c) \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{2500}\right)\)

\(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)

Ta thấy vế trong ngoặc nhỏ hơn 1

\(\Rightarrow49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)>48\)

10 tháng 4 2015

a,

Có: n/n+1 = n+1-1/n+1 = 1-(1/n+1)
n+2/n+3 = n+3-1/n+3 = 1-(1/n+3)
Vì 1/n+1 > 1/n+3
=> 1-(1/n+1) < 1-(1/n+3) hay n/n+1 < n+2/n+3

b,

giả sử n/n+3 < n-1/n+4 
<=> n(n+4) < (n+3)(n-1) 
<=> n^2 + 4n < n^2 + 2n - 3 
<=> 2n < -3 (sai) 
vậy n/n+3 > n-1/n+4 

31 tháng 10 2016

c) \(\frac{n}{2n+1}\)\(\frac{3n}{6n+3}\)\(\frac{3n+1}{6n+3}\)

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(\RightarrowĐPCM\)

24 tháng 3 2016

giúp tui phần b bài này

14 tháng 2 2016

Dễ thì trình bày thử coi.

20 tháng 3 2016

nhanh giúp mình