Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có :
10n + 18n -1 = 10n -1+ 18n
= 100...0 ( n chữ số 0 ) - 1 + 18n
= 99...9 ( n chữ số 9 ) + 18n
= 9 [ 11...1 ( n chữ số 1 ) + 2n ]
Dễ thấy 11..1 ( n chữ số 1 ) có tổng các các chữ số là n
=> 11..1 ( n chữ số 1 ) + 2n = n+ 2n = 3n \(⋮\)3
vì 11..1 ( n chữ số 1 ) + 2n \(⋮\)3
=> 9 [ 11..1 ( n chữ số 1 ) + 2n ] \(⋮\) 27 hay 10n + 18n -1 \(⋮\) 27 ( đpcm )
Những lần mình ghi n chữ số 1 hoặc 9 hoăc 10 thì bạn có thể ngoắc ở dưới số đó luôn vì trên này không viết được như thế !
Lời giải:
Nếu $n$ chia hết cho $3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $A=10^n+18n-1=10^{3k}+18.3k-1=1000^k+54k-1$
Có:
$1000\equiv 1\pmod {27}\Rightarrow 1000^k\equiv 1^k\equiv 1\pmod {27}$
$54k\equiv 0\pmod {27}$
$\Rightarrow 1000^k+54k-1\equiv 1+0-1\equiv 0\pmod {27}$
Hay $A\equiv 0\pmod {27}(1)$
Nếu $n$ chia $3$ dư $1$. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó:
$A=10^{3k+1}+18(3k+1)-1=1000^k.10+54k+17$
$\equiv 1^k.10+0+17=27\equiv 0\pmod {27}(2)$
Nếu $n$ chia $3$ dư $2$. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó:
$A=10^{3k+2}+18(3k+2)-1=1000^k.100+54k+35$
$\equiv 1^k.100+0+35=135\equiv 0\pmod {27}(3)$
Từ $(1); (2); (3)\Rightarrow A\vdots 27$ với mọi $n$ tự nhiên.
\(7x+4y⋮37\Leftrightarrow5\left(7x+4y\right)⋮37\Leftrightarrow35x+20y⋮37\)(dùng dấu 2 chiều vì \(\left(5,37\right)=1\))
Lại có \(74x+74y⋮37\)suy ra \(\left(74x+74y\right)-\left(35x+20y\right)⋮37\)
Điều đó có nghĩa là \(39x+54y⋮37\Leftrightarrow3\left(13x+18y\right)⋮37\)mà \(\left(3,37\right)=1\)nên \(13x+18y⋮37\)
Chúc bạn học tốt!
ta có
A=9(7x+4y) - 2(13x+18y)
A=63x+36y-26x-36y
A=x(63-26)-(36y-36y)
A=37x
=>A chia hết cho 37
mà 7x+4y chia hết cho 37=>9(7x+4y) chia hết cho 37
9(7x+4y) chia hết cho 37=>2(13x+18y)
mà 2 và 37 nguyên tố cùng nhau =>13x+18y chia hết cho 37
vậy 7x+4y chia hết cho 37 thì 13x+18y chia hết cho 37
11..11=11..11-9n-n
n chia hết cho 9 hiển nhiên đúng vì 11...11 có n chữ số 1 tỏng =9n chia hết cho 9
n=9k+t
111...11 =9p + t
11..11-10n=11..11-9n-n=9p+t-9n-t=9(p-n) chia hết cho 9
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Chứng minh J = 10 n + 18 n − 1 chia hết cho 9. Bước 2. Chứng minh J = 10 n + 18 n − 1 chia hết cho 3. |
Ta có: J = 10 n + 18 n − 1 = 10 n − 1 + 18 n ⇒ J = 99...9 + 18 n ⇒ J = 9 11...1 + 2 n => J chia hết cho 9. +) Chứng minh 11...1 + 2 n ⋮ 3 . Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 gồm n chữ số 1. Khi đó, 1 + 1 + ... + 1 = n . Suy ra 11...1 và n có cùng số dư trong phép chia cho 3. => 11...1-n chia hết cho 3. => (11...1+2n) ⋮ 3
⇒
J
⋮
27
|