Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) x chia hết cho 3
b) x không chia hết cho 3
2.a)do n là số tự nhiên nên 60n chia hết cho cả 30 và 15 còn 45 không chia hết cho 30 nhưng lại chia hết cho 15
nên 60n+45 không chia hết cho 30 nhưng lại chia hết cho 15.
b) do a chia 18 dư 12 nên a có dạng 18k+12 với k thuộc N.
mà 18k chia hết cho cả 9 và 6 còn 12 không chia hết cho 9 nhưng lại chia hết cho 6 nên:
a=18k+12 không chia hết cho 9 nhưng lại chia hết cho 6.
c)A=a2+a+1=a.(a+1)+1 mà a.(a+1) là tích 2 số tự nhiên liên tiếp nên A là số lẻ nên A không chia hết cho 2.
Giả sử A chia hết cho 5 => 4A chia hết cho 5 do 4 và 5 nguyên tố cùng nhau.
Khi đó:4a2+4a+4 chia hết cho 5 hay 4A=(2a+1)2+3 chia hết cho 5.
Mà số chính phương không có tận cùng là 2 hay 7 nên 4A không có tận cùng bằng 5 hay 0
=>4A không chia hết cho 5 =>A không chia hết cho 5(ĐPCM)
vậy....
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
a/ \(\left(5n+7\right)\left(4n+6\right)=5n\left(4n+6\right)+7\left(4n+6\right)=20n^2+58n+42\)
Với \(n\varepsilon N\) thì : \(20n^2+58n+42⋮2\)
\(\Leftrightarrow\left(5n+7\right)\left(4n+6\right)⋮2\) với mọi n
b/ \(\left(8n+1\right)\left(6n+5\right)=8n\left(6n+5\right)+\left(6n+5\right)=48n^2+46n+5\)
Với mọi n \(n\in N\) thì : \(42=48n^2+46n⋮2\); \(5⋮2̸\)
\(\Leftrightarrow48n^2+46n+5⋮2̸\)
\(\Leftrightarrow\left(8n+1\right)\left(6n+5\right)⋮2̸\)
a, SAI ĐỀ
b, Ta có:
9x+27y
=9x+3.9y
=9(x+3y) chia hết cho 9(ĐPCM)
c, Ta có:
5x+15y=5(x+3y)
chia hết cho 5 nhưng 3 ko chia hết cho 5
=> 5x+15y ko chia hết cho 5(ĐPCMMMMMMMMMMMMMMMMMMMMMMMM)
li-ke đi tui giải
ko li-ke ko giải
cần li-ke để giải
có li-ke sẽ giải
2 và 2 là 2 số tự nhiên liên tiếp ?
3 và 3 cũng vậy ?