Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số có 2 chữ số là ab (a khác 0; a,b là số tự nhiên)
ab+ba=10a+b+10b+a=(10a+a)+(10b+b)=11a+11b=11(a+b) chia hết cho 11 (ĐPCM)
Gọi 2 số tự nhiên mà đề bài cho là ab và ba ta co: ab + ba = (a0 + b) + (b0 +a) =(a0 +a ) + (b0+b) = aa + bb chia het cho 11 vay ab + ba chia het cho 11 => tong cua 1 so tu nhien co 2 chu so voi so viet theo thu tu nguoc lai luon chia het cho 11
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
1. a chia cho 12 dư 8
=>a=12.k+8
=> a chia hết cho 4(vì cả 2 12.k và 8 đều chia hết cho 4)
a không chia hết cho 6 vì số 12.k chia hết cho 6 và 8 không chia hết cho 6.
\(\overline{ab}+\overline{ba}=10a+b+10b+a=\)
\(11a+11b=11\left(a+b\right)⋮11\)
a ( a + 1 )
. A chẵn ---) a (a + 1 ) chia hết cho 2
. A lẽ -->> A khg chia hết cho 2 --->> A chia 2 dư 1 -------> a-1 chia hết cho 2 ---> a ( a + 1 ) chia hết 2