K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2015

bài này áp dụng phương pháp quy nạp 2 lần. 
................................. 
chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm.

 

tick cho mình nghe bạn =^.^=

4 tháng 12 2015

 

A= 10n -1  + 18.n  = 9999......9 + 18.n   ( có n chứ số 9)

                          = 9.1111....1 + 18n     ; Mà 1111.....1 = 9k + (1+1+1+1+.....+1 )  = 9.k + n

                         = 9.(9k +n)  + 18.n

                        = 81.k + 9n +18.n

                       = 81.k + 27.n

                      = 27.( 3k +n )   chia hết cho 27

Vậy A chia hết cho 27 ; với  n thuộc N

 

1/

Gọi số cần tìm là a

Ta có : 

a : 17 dư 8 

=> a - 8 chia hết cho 17

=> a + 17 - 8 chia hết cho 17

=> a + 9 chia hết cho 17

a : 25 dư 16

=> a - 16 chia hết cho 25

=> a + 25 - 16 chia hết cho 25

=> a + 9 chia hết cho 25

=> a + 9 thuộc BC ( 17 ; 25 )

Ta có :

17 = 17

25 = 52 

=> BCNN ( 17 ; 25 ) = 17 . 52 = 425

=> BC ( 17 ; 25 ) = B ( 425 ) = 

=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }

=> a = { -9 ; 416 ; 941 ; 1366 ; .... }

Mà a là số tự nhiên nhỏ nhất 

=> a = 416

Vậy số cần tìm là 416

14 tháng 12 2019

2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath

14 tháng 12 2019

Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo link trên.

15 tháng 12 2016

Bài 1: a) => tập hợp a = { 108;117 }

b) => tập hợp b = { 90;100;110 }

28 tháng 5 2021

Ta Có:

Cho biểu thức trên là B

\(b\)\(=\)\(10\)\(^n\)\(72n\)\(-1\)

 \(=10\)\(^n\)\(+72n\)\(-1\)

\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

Ta Có:

Cho biểu thức trên là B

bb==1010nn72n72n−1−1

 =10=10nn+72n+72n−1−1

=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)

B= 10n-1+72n=9x(11....1)+72n 

=>B:9=11....1+8n=11....1-n+9n

Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n

=>11....1-n chia hết cho 9

=>B:9=11....1-n+9n chia hết cho 9

Vậy B chia hết cho 81

13 tháng 2 2022

a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012

S = (5 + 5+ 5+ 54) + 55(5 + 5+ 5+ 54)+....+ 52009(5 + 5+ 5+ 54)

Vì (5 + 5+ 5+ 54) = 780 chia hết cho 65

Vậy S chia hết cho 65

b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19. 

(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.

(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19. 

Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất

Suy ra: a + 27 = BCNN (4;11; 19).

Từ đó tìm được: a = 809

A = 10n + 18n - 1 = 10n - 1 - 9n + 27n

29 tháng 12 2023

A = n3 + n2 + 3

   n ⋮ 3⇒ n2 ⋮ 3

⇒ n2 ⋮ 32 (Tính chất của một số chính phương)

⇒ n2 ⋮ 9 

 ⇒  n2.n ⋮ 9

⇒n2.n + n2 ⋮ 9; mà  3 không chia hết cho 9 

⇒ n2.n + n2 + 3 không chia hết cho 9