Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có
97 - 312 = 97 - (32) 6 = 97 - 96 = 96 ( 9 - 1 ) = 96. 8 chia hết cho 8
b/ Ta có
76 + 75 - 74 = 75( 7 + 1 ) - 74 = 75.8 - 74 = 74 . 7 . 8 - 74 = 74 . 56 - 74 = 74 . ( 56 -1 ) = 74 . 55 = 74 . 11 . 5 chia hết cho 11
\(7^{2021}+7^{2020}-7^{2019}=7^{2019}.7^2+7^1.7^{2020}-7^{2019}.1\)
\(=7^{2019}\left(7^2+7-1\right)=7^{2019}\left(49+7-1\right)=7^{2019}.55\)
Mà \(55⋮11\Leftrightarrow7^{2019}.55⋮11\)
Vậy \(7^{2021}+7^{2020}-7^{2019}⋮11\)
Giả sử tồn tại n sao cho n2 + 3n - 38 chia chết cho 49.
Khi đó: Xét biểu thức n2 - 4n + 4 = n2 + 3n - 7n - 38 + 42 = n2 + 3n - 38 - 7(n - 6) chia hết cho 7
Biểu thức đem xét là n2 - 4n + 4 viết -4n = -7n + 3n; 4 = -38 + 42
=> n2 - 4n + 4 = (n - 2)2 chia hết cho 7 hay n - 2 chia hết cho 7;
Gọi n - 2 = 7t => n = 2 + 7t. Thay vào S ta có:
S = (2 + 7t)2 + 3(2 + 7t) - 38 = 4 + 28t + 49t2 + 6 + 21t - 38 = 49t2 + 49t - 28
=> Không chia hết cho 49
=> ĐPCM
87-218=(23)7-218
221-218=218(23-1)
218*7
Vì 218 chia hết cho 2, 7 chia hết hết cho 7
Nên 218*7 chia hết 14
Chứng minh rằng mọi số nguyên dương n thì
B=3^n+3 - 2^n+3 + 3^n+1 - 2^n+1 chia hết cho 10
giúp mik nha
Ta có :
B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )
=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )
=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )
=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )
=> B = 3n-1 . 80 + 2n . 2 . 5
=> B = 3n-1 . 8 . 10 + 2n . 10
=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )
Vậy với mọi số nguyên dương n thì B ⋮ 10
Ta có : \(6^9+6^{10}+6^{11}=6^9\left(1+6+6^2\right)=6^9.43\)chia hết cho 43
Vậy : \(6^9+6^{10}+6^{11}\)chia hết cho 43 (đpcm)
9 = 32
314 - 312 = 312 . 32 - 312 = 312(32 - 1) = 312 . 8 chia het cho 8