Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\\ a,a^3+b^3=a^3=3a^2b+3ab^2+b^3-3a^2b-3ab^2\\ =\left(a+b\right)^3-3ab\left(a+b\right)\\ b,a^3+b^3+c^3-3abc\\ =\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\\ =\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ac-ab-bc\right)\)
Ta có : \(\frac{1}{9}>\frac{1}{16}\)
\(\frac{1}{10}>\frac{1}{16}\)
\(\frac{1}{11}>\frac{1}{16}\)
............
\(\frac{1}{16}=\frac{1}{16}\)
\(\Rightarrow\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{16}>\frac{1}{16}\times8=\frac{1}{2}\)
\(\frac{1}{17}>\frac{1}{32}\)
\(\frac{1}{18}>\frac{1}{32}\)
\(\frac{1}{19}>\frac{1}{32}\)
..........
\(\frac{1}{32}=\frac{1}{32}\)
\(\Rightarrow\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+...+\frac{1}{32}>\frac{1}{32}\times8=\frac{1}{4}\)
\(\Rightarrow\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{32}>\frac{1}{3}+\frac{1}{4}\)
1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105) Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên 1/21+1/22+1/23+1/24+1/25<5×1/20<1/4 Tương tự 1/101+1/102+1/103+1/104+1/105<5×1/100<1/20 1/5+1/20+1/20=6/20=3/10 1/5+(<1/4)+(<1/20)<1/2 1/2=5/10 3/10<5/10 vậy suy ra điều cần chứng minh
1/5+(1/20+1/21+1/22+1/23+1/24+1/25)+(1/101+1/102+103+104+105)
Ta thấy 1/21;1/22;1/23;1/24;1/25 đều nhỏ hơn 1/20 nên
1/21+1/22+1/23+1/24+1/25<5×1/20<1/4
Tương tự
1/101+1/102+1/103+1/104+1/105<5×1/100<1/20
1/5+1/20+1/20=6/20=3/10
1/5+(<1/4)+(<1/20)<1/2
1/2=5/10
3/10<5/10 vậy suy ra điều cần chứng minh
a, 68 + 42 x 5 - 625 : 25
= 68 + 210 - 25
= 278 - 25
= 253
b, 15 x { 37 + 8 + 20 } + 15 x { 13 + 22 }
= 15 x 65 + 15 x 35
= 15 x { 65 + 35 }
= 15 x 100
= 1500
c, 125 x 56 x 3
= 7000 x 3
= 21000
d, 249 - { 49 - 100 }
= 249 - 49 + 100
= 200 + 100
= 300
e, 1/2 + 1/4 + 1/ 8 + 1/32 + 1/64 + 1/128
= 1/1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128
= 1/1 - 1/128
= 127/128
A, \(68+42\times5-625:25\)
= 68 +210 - 25
= 278 - 25
= 253
B,\(15\times\left(37+8+20\right)+15\times\left(13+22\right)\)
= \(15\times\left(37+8+20+13+22\right)\)
=\(15\times100\)
= 1500
C,\(125\times56\times3\)
= \(125\times8\times7\times3\)
= \(1000\times21\)
= 21000
D, 249 - { 49 - 100 }
= 249 - 49 -100
= 200 - 100
= 100
E, \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)(mình sửa lại đề chút xíu nha, nó cứ bị sai sai sao ấy)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
= \(1-\frac{1}{128}\)
=\(\frac{128}{128}-\frac{1}{128}\)
= \(\frac{127}{128}\)
A<10(1/40+1/50+1/70+1/60)=319/420<1
A>10(1/50+1/60+1/70+1/80)>7/12
=>7/12<A<1
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)
\(3A=1-\frac{1}{64}\)
\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)
Ta có:
7/12 = 4/12 + 3/12 = 1/3 + 1/4 = 20/60 + 20/80
1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 = (1/41 + 1/42 + 1/43 + ...+ 1/60) + (1/61 + 1/62 +...+ 1/79 + 1/80)
Do 1/41> 1/42 > 1/43 > ...>1/59 > 1/60
=> (1/41 + 1/42 + 1/43 + ...+ 1/60) > 1/60 + ...+ 1/60 = 20/60
và 1/61> 1/62> ... >1/79> 1/80
=> (1/61 + 1/62 +...+ 1/79 + 1/80) > 1/80 + ...+ 1/80 = 20/80
Vậy: 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 20/60 + 20/80 = 7/12
=> 1/41 + 1/42 + 1/43 +...+ 1/79 + 1/80 > 7/12
Ta có :
1/22 < 1/1.2 = 1/1 - 1/2
1/32 < 1/2.3 = 1/2 - 1/3
..........
1/1002 < 1/99.100 = 1/99 - 1/100
=> 1/22+1/32+1/42+......+1/1002 < 1/1 - 1/2 + 1/2 - 1/3 + .... + 1/99 - 1/100 = 1 - 1/100 < 1
=> 1/22+1/32+1/42+......+1/1002 < 1 ( dpcm )
Gọi tổng trên bằng A. Ta có
A<1/10^2 x 100=1
Nên A<1