\(10x^2+9y^2+4\ge6x\left(y+2\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2021

\(4y^2-3xy+5x^2-6x+2>0\)

~ Chúc bn hok tốt ~ 

21 tháng 9 2021

Bạn làm đầy đủ hơn một chút được ko ạ?

Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có

\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)

\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)

\(=\)\(\frac{5}{3}\)

6 tháng 7 2017

ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)

\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

1 tháng 6 2017

đề sai 

cho M: \(\left(\frac{x^2-25}{x^3-10x^2+25}\right):\left(\frac{y-2}{y^2-y-2}\right)\)

9 tháng 12 2018

\(M=\left(\frac{1}{3}x-y\right)\left(x^2+3xy+9y^2\right)+9y^3-\frac{1}{3}x^3\)

\(=\frac{1}{3}x^3+x^2y+3xy^2-x^2y-3xy^2-9y^3+9y^3-\frac{1}{3}x^3\)

\(=\left(\frac{1}{3}x^3-\frac{1}{3}x^3\right)+\left(x^2y-x^2y\right)+\left(3xy^2-3xy^2\right)-\left(9y^3-9y^3\right)\)

\(=0\)

Vậy : Giá trị của M ko phụ thuộc vào biến x,y

=.= hk tốt!!

AH
Akai Haruma
Giáo viên
2 tháng 3 2020

Lời giải:

ĐK: $x\neq 5;x\neq 0; y\neq 2; y\neq -1$

\(M=\frac{x^2-25}{x^3-10x^2+25x}:\frac{y-2}{(y-2)(y+1)}=\frac{(x-5)(x+5)}{x(x^2-10x+25)}:\frac{1}{y+1}\)

\(=\frac{(x-5)(x+5)}{x(x-5)^2}:\frac{1}{y+1}=\frac{x+5}{x(x-5)}.(y+1)=\frac{(x+5)(y+1)}{x(x-5)}\)

--------------

$x^2+9y^2-4xy=2xy-|x-3|$

$\Leftrightarrow x^2+9y^2-6xy=-|x-3|$

$\Leftrightarrow (x-3y)^2+|x-3|=0$

Dễ thấy $(x-3y)^2\geq 0; |x-3|\geq 0$ với mọi $x,y\in $ĐKXĐ nên để tổng của chúng bằng $0$ thì:

$x-3y=x-3=0\Rightarrow x=3; y=1$

Khi đó: $M=\frac{(3+5)(1+1)}{3(3-5)}=\frac{-8}{3}$

3 tháng 7 2019

\(a,\left(2x+5\right)\left(4x^2-10x+25\right)\)

\(=\left(2x+5\right)\left[\left(2x\right)^2-2x.5+5^2\right]\)

\(=\left(2x\right)^3+5^3=8x^3+125\)

\(b,\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)

\(=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]\)

\(=\left(2x\right)^3+\left(3y\right)^3=8x^3+27y^3\)

3 tháng 7 2019

57) (2x + 5)(4x2 - 10x + 25)

= 2x.4x2 + 2x.(-10x) + 2x.25 + 5.4x2 + 5.(-10x) + 5.25

= 8x3 - 20x2 + 50x + 20x2 - 50x + 125

= 8x3 + (-20x2 + 20x2) + (50x - 50x) + 125

= 8x3 + 125

59) làm tương tự

19 tháng 6 2016

\(A=x\left(x-6\right)+10=x^2-6x+10\)

   \(=\left(x-3\right)^2+1>0\) với mọi x

\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

    \(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y

8 tháng 10 2016

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

18 tháng 6 2015

A = x^2 - 2x.7/2 + 49 / 4 +3/4 =(x - 7/2)^ 2 +3/4 >0

B, Phá ngoặc sau làm tuwowg tự

C dua ve hằng đẳng thức