Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
b: \(x-2\cdot\sqrt{x}\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c: \(=x^2-2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2=\left(x-\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2>0\forall x,y\ne0\)
Áp dụng bất đẳng thức AM-GM ta có :
\(x+\frac{1}{x-1}=\left[\left(x-1\right)+\frac{1}{x-1}\right]+1\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+1=2+1=3\left(đpcm\right)\)
Đẳng thức xảy ra <=> x = 2
ặt x+1=tx+1=t thì t>0t>0 và x=-1+tx=−1+t. Ta có
2x+\dfrac{1}{\left(x+1\right)^2}=2\left(-1+t\right)+\dfrac{1}{t^2}=-2+t+t+\dfrac{1}{t^2}2x+(x+1)21=2(−1+t)+t21=−2+t+t+t21
\ge-2+3\sqrt[3]{t.t.\dfrac{1}{t^2}}=-2+3=1≥−2+33t.t.t21=−2+3=1
Ta có: \(\frac{x-2}{\sqrt{x-1}+1}\)
\(=\frac{x-1-1}{\sqrt{x-1}+1}\)
\(=\frac{\left(\sqrt{x-1}-1\right)\left(\sqrt{x-1}+1\right)}{\sqrt{x-1}+1}\)
\(=\sqrt{x-1}-1\)
Ta có: \(\sqrt{x-1}\ge0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\sqrt{x-1}-1\ge-1\forall x\) thoả mãn ĐKXĐ
\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}\ge-1\forall x\ge1\)(đpcm)
1)đề thiếu
2)\(\frac{x^2+y^2}{x-y}=\frac{\left(x^2-2xy+y^2\right)+2xy}{x-y}\)\(=\frac{\left(x-y\right)^2+2}{x-y}=x-y+\frac{2}{x-y}\)
\(x>y\Rightarrow x-y>0\).Áp dụng Bđt Côsi ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right)\cdot\frac{2}{x-y}}=2\sqrt{2}\)
Đpcm
3)\(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Đpcm
x^8 - x^7 + x^2 - x + 1
= x^7(x-1) + x(x-1) +1
= (x-1)(x^7 + x) + 1
= (x^2-x)(x^6+1) + 1
Ta có: x^2 - x lớn hơn hoặc = 0; x^6 + 1 >0
=> (x^2-x)(x^6+1) lơn hơn hoặc bằng 0
=> (x^2+1)(x^6+1) + 1 > 0
=> x^8 - x^7 + x^2 - x + 1 > 0 (đpcm)