Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2x^2+4y^2+4xy-6x+10\)\(=x^2+4xy+4y^2+x^2-6x+9+1\)\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x+2y\right)^2\ge0;\left(x-3\right)^2\ge0\)\(\Rightarrow\left(x+2y\right)^2+\left(x-3\right)^2\ge0\)\(\Leftrightarrow\left(x+2y\right)^2+\left(x-3\right)^2+1\ge1>0\)\(2x^2+4y^2+4xy-6x+10>0\left(đpcm\right)\)
\(x^2-2x+5+y^2-4y=0\)
\(x^2-2\times x\times1+1^2-1^2+y^2-2\times y\times2+2^2-2^2+5=0\)
\(\left(x-1\right)^2+\left(y-2\right)^2=0\)
\(\left(x-1\right)^2\ge0\)
\(\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=\left(y-2\right)^2=0\)
\(\Leftrightarrow x-1=y-2=0\)
\(\Leftrightarrow x=1;y=2\)
\(x^2+4y^2+13-6x-8y=0\)
\(\Leftrightarrow x^2-6x+9+4y^2-8y+4=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(2y-2\right)^2=0\)
Dấu = xảy ra khi
\(\orbr{\begin{cases}x-3=0\\2y-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\y=1\end{cases}}\)
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
\(4y^2+2x^2+4xy-6x+10\)
\(=4y^2+4xy+x^2+x^2-6x+9+1\)
\(=\left(2y+x\right)^2+\left(x-3\right)^2+1\)
Vì: \(\hept{\begin{cases}\left(2y+x\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(2y+x\right)^2+\left(x-3\right)^2+1>0\)
a) x2-6x+10>0
<=>x2-6x+9+1>0
<=>(x-3)2+1>0(đúng với mọi x)
vậy x2-6x+10>0 với mọi x
b)x2-2x+y2+4y+6>0
<=>x2-2x+1y2+4y+4+1>0
<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)
Vậy x2-2x+y2+4y+6>0 với mọi x,y
Ta có :
\(x^2+4y^2+z^2-6x-12y-2z+4xy+13\)
\(=x^2+4y^2-9+4xy-12y-6x+z^2-2z+1+21\)
\(=\left(x+2y-3\right)^2+\left(z-1\right)^2+21\)
Vì \(\left(x+2y-3\right)^2\ge0\forall x,y\)
\(\left(z-1\right)^2\ge0\forall z\)
\(\Rightarrow\left(x+2y-3\right)^2+\left(z-1\right)^2\ge0\forall x,y,z\)
\(\Rightarrow\left(x+2y-3\right)^2+\left(z-1\right)^2+21\ge21>0\forall x,y,z\)
Vậy \(x^2+4y^2+z^2-6x-12y-2z+4xy+13\) luôn dương với mọi x,y,z
\(Tacó\): \(C=x^2+2xy+y^2+y^2-6y+15\)
\(=\left(x^2+2xy+y^2\right)+\left(y^2-6y+9\right)+6\)
\(=\left(x+y\right)^2+\left(y-3\right)^2+6\)
\(Mà\)\(\left(x+y\right)^2\ge0\)với mọi x,y
\(\left(y-3\right)^2\ge0\)với mọi y
\(\Rightarrow\left(x+y\right)^2+\left(y-3\right)^2+6>0\)
\(Hay\)\(x^2+2xy+y^2+y^2-6y+15>0\)\
:
skjdjkasfauishfuhaufhjiw I DONT KNOW, IM NĂM NAY MỚI LÊN LỚP 7 sjjncjknfjknskjfnksnejfdnfudnsufinsuiefnukdn,zcm xzjbdfdsnjdnjkfnjksfnjxnckjnckjsnckanksbfcfjdbiefhiuewhfdsfjjjjjjjfsdlifhnmmcaoicmaisaowjdiahcuxncoiacjoaisncauhwfuanc