\(x^{10}-10x+9⋮\left(x-1\right)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=x^{20}+x^{10}+1\)

\(x^{50}+x^{10}+1\)

\(=x^{50}-x^{20}+A\)

\(=x^{20}\left(x^{30}-1\right)+A\)

\(=x^{20}\left(x^{10}-1\right)A+A\)

\(=\left(x^{30}-x^{20}+1\right)A\)

\(\left(x^{30}-x^{20}+1\right)A⋮A\)

\(\Rightarrow\left(x^{50}+x^{10}+1\right)⋮\left(x^{20}+x^{10}+1\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

\(B=x(x^2+xy+y^2)-y(y^2+xy+y^2)\)

\(=(x-y)(x^2+xy+y^2)=x^3-y^3=10^3-(-1)^3=1000-(-1)=1001\)

\(C=x^4+10x^3+10x^2+10\)

\(=x^4+9x^3+x^3+9x^2+x^2+10\)

\(=x^3(x+9)+x^2(x+9)+x^2+10\)

\(=(x+9)(x^3+x^2)+x^2+10\)

\(=(-9+9)[(-9)^3+(-9)^2]+(-9)^2+10\)

\(=0+(-9)^2+10=91\)

Thay $x=-1$ vào biểu thức:

\(D=x^2(x+y)-xy(x-y)-x(y^2+1)\)

\(=(-1)^2(x+y)-(-1)y(x-y)-(-1)(y^2+1)\)

\(=x+y+y(x-y)+(y^2+1)\)

\(=x+y+xy-y^2+y^2+1=x+y+xy+1\)

\(=(x+1)(y+1)=(-1+1)(y+1)=0\)

19 tháng 12 2017

b, ta có

8\((x)^{9}\)-\(9(x)^{8} +1 \)= (8x^9 -8x^8)-(x^8-1)

=8x^8(x-1)-(x-1)(x^7+x^6+x^5+...+x+1)

=(x-1)(8x^8-x^7-x^6-......-x-1)

=(x-1)[(x^8-x^7)+(x^8-x^6)+.....+(x^8-1)]

=(x-1)[x^7(x-1)+ x^6(x^2-1)+.......+(x-1).(x^7+x^6+.....+x+1)]

=(x-1)^2.[x^7+x^6(x+1)+x^5(x^2+x+1)+.....+(x^7+x^6+...+x+1)]

\(\Rightarrow\) C chia hết cho D(dpcm)

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé